Regulation of NMDA receptor trafficking by amyloid-β (original) (raw)
Perdahl, E., Wu, W.C., Browning, M.D., Winblad, B. & Greengard, P. Protein III, a neuron-specific phosphoprotein: variant forms found in human brain. Neurobehav. Toxicol. Teratol.6, 425–431 (1984). CASPubMed Google Scholar
Terry, R.D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol.30, 572–580 (1991). ArticleCASPubMed Google Scholar
Takahashi, R.H. et al. Oligomerization of Alzheimer's β-amyloid within processes and synapses of cultured neurons and brain. J. Neurosci.24, 3592–3599 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hardy, J. & Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). ArticleCASPubMed Google Scholar
Chapman, P.F. et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci.2, 271–276 (1999). ArticleCASPubMed Google Scholar
Freir, D.B., Holscher, C. & Herron, C.E. Blockade of long-term potentiation by β-amyloid peptides in the CA1 region of the rat hippocampus in vivo. J. Neurophysiol.85, 708–713 (2001). ArticleCASPubMed Google Scholar
Kim, J.H., Anwyl, R., Suh, Y.H., Djamgoz, M.B. & Rowan, M.J. Use-dependent effects of amyloidogenic fragments of (β)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J. Neurosci.21, 1327–1333 (2001). ArticleCASPubMedPubMed Central Google Scholar
Malenka, R.C. Synaptic plasticity and AMPA receptor trafficking. Ann. NY Acad. Sci.1003, 1–11 (2003). ArticleCASPubMed Google Scholar
Naslund, J. et al. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. J. Am. Med. Assoc.283, 1571–1577 (2000). ArticleCAS Google Scholar
Snyder, E.M. et al. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat. Neurosci.4, 1079–1085 (2001). ArticleCASPubMed Google Scholar
Roche, K.W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci.4, 794–802 (2001). ArticleCASPubMed Google Scholar
Nong, Y. et al. Glycine binding primes NMDA receptor internalization. Nature422, 302–307 (2003). ArticleCASPubMed Google Scholar
Scott, D.B., Michailidis, I., Mu, Y., Logothetis, D. & Ehlers, M.D. Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J. Neurosci.24, 7096–7109 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mammen, A.L., Huganir, R.L. & O'Brien, R.J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci.17, 7351–7358 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rao, A. & Craig, A.M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron19, 801–812 (1997). ArticleCASPubMed Google Scholar
Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron28, 511–525 (2000). ArticleCASPubMed Google Scholar
Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci.6, 231–242 (2003). ArticleCASPubMed Google Scholar
Cai, D. et al. Presenilin-1 regulates intracellular trafficking and cell surface delivery of β-amyloid precursor protein. J. Biol. Chem.278, 3446–3454 (2003). ArticleCASPubMed Google Scholar
Wang, H.Y. et al. β-Amyloid(1–42) binds to α7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J. Biol. Chem.275, 5626–5632 (2000). ArticleCASPubMed Google Scholar
Dineley, K.T. et al. β-amyloid activates the mitogen-activated protein kinase cascade via hippocampal α7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J. Neurosci.21, 4125–4133 (2001). ArticleCASPubMedPubMed Central Google Scholar
Levy, R.B. & Aoki, C. α7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex. J. Neurosci.22, 5001–5015 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shi, J., Townsend, M. & Constantine-Paton, M. Activity-dependent induction of tonic calcineurin activity mediates a rapid developmental downregulation of NMDA receptor currents. Neuron28, 103–114 (2000). ArticleCASPubMed Google Scholar
Stevens, T.R., Krueger, S.R., Fitzsimonds, R.M. & Picciotto, M.R. Neuroprotection by nicotine in mouse primary cortical cultures involves activation of calcineurin and L-type calcium channel inactivation. J. Neurosci.23, 10093–10099 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y.T. & Salter, M.W. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature369, 233–235 (1994). ArticleCASPubMed Google Scholar
Vissel, B., Krupp, J.J., Heinemann, S.F. & Westbrook, G.L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci.4, 587–596 (2001). ArticleCASPubMed Google Scholar
Pelkey, K.A. et al. Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron34, 127–138 (2002). ArticleCASPubMed Google Scholar
Paul, S., Nairn, A.C., Wang, P. & Lombroso, P.J. NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat. Neurosci.6, 34–42 (2003). ArticleCASPubMed Google Scholar
Lavezzari, G., McCallum, J., Lee, R. & Roche, K.W. Differential binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA receptor subunit NR2B regulates surface expression. Neuropharmacology45, 729–737 (2003). ArticleCASPubMed Google Scholar
Shaywitz, A.J. & Greenberg, M.E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem.68, 821–861 (1999). ArticleCASPubMed Google Scholar
Tong, L., Thornton, P.L., Balazs, R. & Cotman, C.W. β-amyloid-(1–42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. J. Biol. Chem.276, 17301–17306 (2001). ArticleCASPubMed Google Scholar
Shieh, P.B., Hu, S.C., Bobb, K., Timmusk, T. & Ghosh, A. Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron20, 727–740 (1998). ArticleCASPubMed Google Scholar
Tao, X., Finkbeiner, S., Arnold, D.B., Shaywitz, A.J. & Greenberg, M.E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron20, 709–726 (1998). ArticleCASPubMed Google Scholar
Riccio, A., Ahn, S., Davenport, C.M., Blendy, J.A. & Ginty, D.D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science286, 2358–2361 (1999). ArticleCASPubMed Google Scholar
Taubenfeld, S.M., Milekic, M.H., Monti, B. & Alberini, C.M. The consolidation of new but not reactivated memory requires hippocampal C/EBPβ. Nat. Neurosci.4, 813–818 (2001). ArticleCASPubMed Google Scholar
Yamamoto-Sasaki, M., Ozawa, H., Saito, T., Rosler, M. & Riederer, P. Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res.824, 300–303 (1999). ArticleCASPubMed Google Scholar
Valjent, E. et al. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl. Acad. Sci. USA102, 491–496 (2005). ArticleCASPubMed Google Scholar
Alvestad, R.M. et al. Tyrosine dephosphorylation and ethanol inhibition of _N_-methyl-D-aspartate receptor function. J. Biol. Chem.278, 11020–11025 (2003). ArticleCASPubMed Google Scholar
Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science285, 1569–1572 (1999). ArticleCASPubMed Google Scholar