A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves (original) (raw)
Wong, R.O. Retinal waves and visual system development. Annu. Rev. Neurosci.22, 29–47 (1999). ArticleCAS Google Scholar
Torborg, C.L. & Feller, M.B. Spontaneous patterned retinal activity and the refinement of retinal projections. Prog. Neurobiol.76, 213–235 (2005). Article Google Scholar
Stellwagen, D. & Shatz, C.J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron33, 357–367 (2002). ArticleCAS Google Scholar
Torborg, C.L., Hansen, K.A. & Feller, M.B. High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nat. Neurosci.8, 72–78 (2005). ArticleCAS Google Scholar
McLaughlin, T., Torborg, C.L., Feller, M.B. & O'Leary, D.D. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron40, 1147–1160 (2003). ArticleCAS Google Scholar
Grubb, M.S., Rossi, F.M., Changeux, J.P. & Thompson, I.D. Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron40, 1161–1172 (2003). ArticleCAS Google Scholar
Chandrasekaran, A.R., Plas, D.T., Gonzalez, E. & Crair, M.C. Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse. J. Neurosci.25, 6929–6938 (2005). ArticleCAS Google Scholar
Mrsic-Flogel, T.D. et al. Altered map of visual space in the superior colliculus of mice lacking early retinal waves. J. Neurosci.25, 6921–6928 (2005). ArticleCAS Google Scholar
Feller, M.B. Spontaneous correlated activity in developing neural circuits. Neuron22, 653–656 (1999). ArticleCAS Google Scholar
O'Donovan, M.J. The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr. Opin. Neurobiol.9, 94–104 (1999). ArticleCAS Google Scholar
Luthi, A. & McCormick, D.A. H-current: properties of a neuronal and network pacemaker. Neuron21, 9–12 (1998). ArticleCAS Google Scholar
Ramirez, J.M., Tryba, A.K. & Pena, F. Pacemaker neurons and neuronal networks: an integrative view. Curr. Opin. Neurobiol.14, 665–674 (2004). ArticleCAS Google Scholar
Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science304, 1926–1929 (2004). ArticleCAS Google Scholar
Zheng, J.J., Lee, S. & Zhou, Z.J. A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron44, 851–864 (2004). ArticleCAS Google Scholar
Syed, M.M., Lee, S., Zheng, J. & Zhou, Z.J. Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J. Physiol. (Lond.)560, 533–549 (2004). ArticleCAS Google Scholar
Bansal, A. et al. Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. J. Neurosci.20, 7672–7681 (2000). ArticleCAS Google Scholar
Feller, M.B., Wellis, D.P., Stellwagen, D., Werblin, F.S. & Shatz, C.J. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science272, 1182–1187 (1996). ArticleCAS Google Scholar
Zhou, Z.J. & Zhao, D. Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. J. Neurosci.20, 6570–6577 (2000). ArticleCAS Google Scholar
Wong, W.T., Myhr, K.L., Miller, E.D. & Wong, R.O. Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity. J. Neurosci.20, 351–360 (2000). ArticleCAS Google Scholar
Zhou, Z.J. The function of the cholinergic system in the developing mammalian retina. Prog. Brain Res.131, 599–613 (2001). ArticleCAS Google Scholar
Zhou, Z.J. Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina. J. Neurosci.18, 4155–4165 (1998). ArticleCAS Google Scholar
Ames, A. & Nesbett, F.B. In vitro retina as an experimental model of the central nervous system. J. Neurochem.37, 867–877 (1981). ArticleCAS Google Scholar
Stellwagen, D., Shatz, C.J. & Feller, M.B. Dynamics of retinal waves are controlled by cyclic AMP. Neuron24, 673–685 (1999). ArticleCAS Google Scholar
Faber, E.S. & Sah, P. Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist9, 181–194 (2003). ArticleCAS Google Scholar
Lancaster, B. & Adams, P.R. Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J. Neurophysiol.55, 1268–1282 (1986). ArticleCAS Google Scholar
Lancaster, B. & Nicoll, R.A. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J. Physiol. (Lond.)389, 187–203 (1987). ArticleCAS Google Scholar
Sah, P. & Clements, J.D. Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the after hyperpolarization in hippocampal pyramidal neurons. J. Neurosci.19, 3657–3664 (1999). ArticleCAS Google Scholar
Sah, P. Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci.19, 150–154 (1996). ArticleCAS Google Scholar
Sah, P. & Faber, E.S. Channels underlying neuronal calcium-activated potassium currents. Prog. Neurobiol.66, 345–353 (2002). ArticleCAS Google Scholar
Vogalis, F., Storm, J.F. & Lancaster, B. SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur. J. Neurosci.18, 3155–3166 (2003). Article Google Scholar
Shah, M.M., Miscony, Z., Javadzadeh-Tabatabaie, M., Ganellin, C.R. & Haylett, D.G. Clotrimazole analogues: effective blockers of the slow afterhyperpolarization in cultured rat hippocampal pyramidal neurones. Br. J. Pharmacol.132, 889–898 (2001). ArticleCAS Google Scholar
Ozaita, A. et al. A unique role for Kv3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina. J. Neurosci.24, 7335–7343 (2004). ArticleCAS Google Scholar
Sipila, S.T., Huttu, K., Soltesz, I., Voipio, J. & Kaila, K. Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J. Neurosci.25, 5280–5289 (2005). Article Google Scholar
Tauchi, M. & Masland, R.H. The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc. R. Soc. Lond. B223, 101–119 (1984). ArticleCAS Google Scholar
Vaney, D.I. 'Coronate' amacrine cells in the rabbit retina have the 'starburst' dendritic morphology. Proc. R. Soc. Lond. B220, 501–508 (1984). ArticleCAS Google Scholar
Famiglietti, E.V. Starburst amacrine cells: morphological constancy and systematic variation in the anisotropic field of rabbit retinal neurons. J. Neurosci.5, 562–577 (1985). ArticleCAS Google Scholar
Jackson, A.C., Yao, G.L. & Bean, B.P. Mechanism of spontaneous firing in dorsomedial suprachiasmatic nucleus neurons. J. Neurosci.24, 7985–7998 (2004). ArticleCAS Google Scholar
McCormick, D.A. & Huguenard, J.R. A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol.68, 1384–1400 (1992). ArticleCAS Google Scholar
Huguenard, J.R. & McCormick, D.A. Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol.68, 1373–1383 (1992). ArticleCAS Google Scholar
Schwindt, P.C., Spain, W.J. & Crill, W.E. Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons. Neuroscience47, 571–578 (1992). ArticleCAS Google Scholar
Zhang, L. et al. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices. J. Neurophysiol.74, 2225–2241 (1995). ArticleCAS Google Scholar
Velumian, A.A. & Carlen, P.L. Differential control of three after-hyperpolarizations in rat hippocampal neurones by intracellular calcium buffering. J. Physiol. (Lond.)517, 201–216 (1999). ArticleCAS Google Scholar
Petit-Jacques, J., Volgyi, B., Rudy, B. & Bloomfield, S.A. Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina. J. Neurophysiol.94, 1770–1780 (2005). ArticleCAS Google Scholar