Cortico–basal ganglia circuit mechanism for a decision threshold in reaction time tasks (original) (raw)
Luce, R.D. Response Times (Oxford University Press, New York, 1986). Google Scholar
Usher, M. & McClelland, J.L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev.108, 550–592 (2001). ArticleCASPubMed Google Scholar
Reddi, B.A.J., Asrress, K.N. & Carpenter, R.H.S. Accuracy, information, and response time in a saccadic decision task. J. Neurophysiol.90, 3538–3546 (2003). ArticleCASPubMed Google Scholar
Ratcliff, R. & Smith, P.L. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev.111, 333–367 (2004). ArticlePubMedPubMed Central Google Scholar
Newsome, W.T., Britten, K.H. & Movshon, J.A. Neuronal correlates of a perceptual decision. Nature341, 52–54 (1989). ArticleCASPubMed Google Scholar
Roitman, J.D. & Shadlen, M.N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci.22, 9475–9489 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kim, J.N. & Shadlen, M.N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci.2, 176–185 (1999). ArticlePubMed Google Scholar
Hanes, D.P. & Schall, J.D. Neural control of voluntary movement initiation. Science274, 427–430 (1996). ArticleCASPubMed Google Scholar
Schall, J.D. & Thompson, K.G. Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci.22, 241–259 (1999). ArticleCASPubMed Google Scholar
Gold, J.I. & Shadlen, M.N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci.5, 10–16 (2001). ArticlePubMed Google Scholar
Gold, J.I. & Shadlen, M.N. Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron36, 299–308 (2002). ArticleCASPubMed Google Scholar
Smith, P.L. & Ratcliff, R. Psychology and neurobiology of simple decisions. Trends Neurosci.27, 161–168 (2004). ArticleCASPubMed Google Scholar
Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron36, 955–968 (2002). ArticleCASPubMed Google Scholar
Wong, K.-F. & Wang, X.-J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci.26, 1314–1328 (2006). ArticleCASPubMedPubMed Central Google Scholar
Brown, E. et al. Simple neural networks that optimize decisions. Int. J. Bifurc. Chaos15, 803–826 (2005). Article Google Scholar
Palmer, J., Huk, A.C. & Shadlen, M.H. The effect of stimulus strength on the speed and accuracy of a perceptual decision. J. Vis.5, 376–404 (2005). ArticlePubMed Google Scholar
Hall, W.C., Moschovakis, A. (eds.). The Superior Colliculus: New Approaches for Studying Sensorimotor Integration (CRC Press, New York, 2003). Book Google Scholar
Munoz, D.P. & Wurtz, R.H. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J. Neurophysiol.73, 2313–2333 (1995). ArticleCASPubMed Google Scholar
Sparks, D.L. The brainstem control of saccadic eye movements. Nat. Rev. Neurosci.3, 952–964 (2002). ArticleCASPubMed Google Scholar
Scudder, C.A., Kaneko, C.R.S. & Fuchs, A.F. The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp. Brain Res.142, 439–462 (2002). ArticlePubMed Google Scholar
Pettit, D.L., Helms, M.C., Lee, P.L., Augustine, G.J. & Hall, W.C. Local excitatory circuits in the intermediate gray layer of the superior colliculus. J. Neurophysiol.81, 1424–1427 (1999). ArticleCASPubMed Google Scholar
Saito, Y. & Isa, T. Electrophysiological and morphological properties of neurons in the rat superior colliculus. I. Neurons in the intermediate layer. J. Neurophysiol.82, 754–767 (1999). ArticleCASPubMed Google Scholar
Saito, Y. & Isa, T. Local excitatory network and NMDA receptor activation generate a synchronous and bursting command from the superior colliculus. J. Neurosci.23, 5854–5864 (2003). ArticleCASPubMedPubMed Central Google Scholar
Saito, Y. & Isa, T. Laminar specific distribution of lateral excitatory connections in the rat superior colliculus. J. Neurophysiol.92, 3500–3510 (2004). ArticlePubMed Google Scholar
Hikosaka, O., Takikawa, Y. & Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev.80, 953–978 (2000). ArticleCASPubMed Google Scholar
Houk, J.C., Davis, J.L. & Beiser, D.G. (eds.). Model of Information Processing in the Basal Ganglia 2nd edn. (MIT Press, Cambridge, Massachusetts, 1998). Google Scholar
Graybiel, A.M. Building action repertoires: memory and learning functions of the basal ganglia. Curr. Opin. Neurobiol.5, 733–741 (1995). ArticleCASPubMed Google Scholar
Wickens, J. Basal ganglia: structure and computations. Network: Comput. Neural Syst.8, 77–109 (1997). Article Google Scholar
Hikosaka, O., Nakamura, K. & Nakahara, H. Basal ganglia orient eyes to reward. J. Neurophysiol.95, 567–584 (2006). ArticlePubMed Google Scholar
Nicola, S.M., Surmeier, D.T. & Malenka, R.C. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci.23, 185–215 (2000). ArticleCASPubMed Google Scholar
Reynolds, J.N.J., Hyland, B.I. & Wickens, J.R. A cellular mechanism of reward-related learning. Nature413, 67–70 (2001). ArticleCASPubMed Google Scholar
Kawagoe, R., Takikawa, Y. & Hikosaka, O. Reward-predicting activity of dopamine and caudate neurons—a possible mechanism of motivational control of saccadic eye movement. J. Neurophysiol.91, 1013–1024 (2004). ArticleCASPubMed Google Scholar
Hikosaka, O. & Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol.49, 1230–1253 (1983). ArticleCASPubMed Google Scholar
Sato, M. & Hikosaka, O. Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. J. Neurosci.22, 2363–2373 (2002). ArticleCASPubMedPubMed Central Google Scholar
Munoz, D.P., Dorris, M.C., Pare, M. & Everling, S. On your mark, get set: brainstem circuitry underlying saccadic initiation. Can. J. Physiol. Pharmacol.78, 934–944 (2000). ArticleCASPubMed Google Scholar
Ali, A.B. & Thomson, A.M. Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus. J. Physiol. (Lond.)507, 185–199 (1998). ArticleCAS Google Scholar
Markram, H., Wang, Y . & Tsodyks, Y. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA.95, 5323–5328 (1998). ArticleCASPubMedPubMed Central Google Scholar
Munoz, D.P. & Istvan, P.J. Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J. Neurophysiol.79, 1193–1209 (1998). ArticleCASPubMed Google Scholar
Horwitz, G.D. & Newsome, W.T. Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. J. Neurophysiol.86, 2543–2558 (2001). ArticleCASPubMed Google Scholar
Wilson, C.J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci.16, 2397–2410 (1996). ArticleCASPubMedPubMed Central Google Scholar
Gruber, A.J., Solla, S.A., Surmeier, D.J. & Houk, J.C. Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J. Neurophysiol.90, 1095–1114 (2003). ArticlePubMed Google Scholar
Frank, M.J., Seeberger, L.C. & O'Reilly, R.C. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science306, 1940–1943 (2004). ArticleCASPubMed Google Scholar
Soltani, A. & Wang, X.-J.A. Biophysically based neural model of matching law behavior: melioration by stochastic synapses. J. Neurosci.26, 3731–3744 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lauwereyns, J., Watanabe, K., Coe, B. & Hikosaka, O. A neural correlate of response bias in monkey caudate nucleus. Nature418, 413–417 (2002). ArticleCASPubMed Google Scholar
Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci.10, 1157–1169 (1993). ArticleCASPubMed Google Scholar
Behan, M., Steinhacker, K., Jeffrey-Borger, S. & Meredith, M.A. Chemoarchitecture of GABAergic neurons in the ferret superior colliculus. J. Comp. Neurol.452, 334–359 (2002). ArticleCASPubMed Google Scholar
Sommer, M.A. & Wurtz, R.H. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J. Neurophysiol.91, 1403–1423 (2004). ArticlePubMed Google Scholar
Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J. Neurophysiol.61, 780–798 (1989). ArticleCASPubMed Google Scholar