Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development (original) (raw)
Sur, M. & Leamey, C.A. Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci.2, 251–262 (2001). ArticleCAS Google Scholar
Hubel, D.H. & Wiesel, T.N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol.26, 994–1002 (1963). ArticleCAS Google Scholar
Hubel, D.H. & Wiesel, T.N. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol.28, 1041–1059 (1965). ArticleCAS Google Scholar
Stryker, M.P. & Strickland, S.L. Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity. Invest. Ophthalmol. Vis. Sci.25, 278 (1984). Google Scholar
Bi, G. & Poo, M. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci.24, 139–166 (2001). ArticleCAS Google Scholar
Song, S. & Abbott, L.F. Cortical development and remapping through spike timing-dependent plasticity. Neuron32, 339–350 (2001). ArticleCAS Google Scholar
Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic action potentials and EPSPs. Science275, 213–215 (1997). ArticleCAS Google Scholar
Magee, J.C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science275, 209–213 (1997). ArticleCAS Google Scholar
Golding, N.L., Staff, N.P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature418, 326–331 (2002). ArticleCAS Google Scholar
Stuart, G.J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature367, 69–72 (1994). ArticleCAS Google Scholar
Regehr, W., Kehoe, J.S., Ascher, P. & Armstrong, C. Synaptically triggered action potentials in dendrites. Neuron11, 145–151 (1993). ArticleCAS Google Scholar
Woolsey, T.A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res.17, 205–242 (1970). ArticleCAS Google Scholar
Simons, D.J. & Land, P.W. Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature326, 694–697 (1987). ArticleCAS Google Scholar
Fox, K. A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J. Neurosci.12, 1826–1838 (1992). ArticleCAS Google Scholar
Glazewski, S. & Fox, K. Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats. J. Neurophysiol.75, 1714–1729 (1996). ArticleCAS Google Scholar
Stern, E.A., Maravall, M. & Svoboda, K. Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron31, 305–315 (2001). ArticleCAS Google Scholar
Shepherd, G.M., Pologruto, T.A. & Svoboda, K. Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron38, 277–289 (2003). ArticleCAS Google Scholar
Bureau, I., Shepherd, G.M. & Svoboda, K. Precise development of functional and anatomical columns in the neocortex. Neuron42, 789–801 (2004). ArticleCAS Google Scholar
Margrie, T.W. et al. Targeted whole-cell recordings in the mammalian brain in vivo. Neuron39, 911–918 (2003). ArticleCAS Google Scholar
Dittgen, T. et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc. Natl. Acad. Sci. USA101, 18206–18211 (2004). ArticleCAS Google Scholar
Komai, S., Denk, W., Osten, P., Brecht, M. & Margrie, T.W. Two-photon targeted patching (TPTP) in vivo. Nat. Protocols1, 648–653 (2006). Article Google Scholar
Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). ArticleCAS Google Scholar
Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science248, 73–76 (1990). ArticleCAS Google Scholar
Yu, F.H. & Catterall, W.A. Overview of the voltage-gated sodium channel family. Genome Biol.4, 207 (2003). Article Google Scholar
Mainen, Z.F. & Sejnowski, T.J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature382, 363–366 (1996). ArticleCAS Google Scholar
Mainen, Z.F., Joerges, J., Huguenard, J.R. & Sejnowski, T.J. A model of spike initiation in neocortical pyramidal neurons. Neuron15, 1427–1439 (1995). ArticleCAS Google Scholar
Palmer, L.M. & Stuart, G.J. Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci.26, 1854–1863 (2006). ArticleCAS Google Scholar
Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci.23, 8558–8567 (2003). ArticleCAS Google Scholar
Moore, C.I. & Nelson, S.B. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol.80, 2882–2892 (1998). ArticleCAS Google Scholar
Brecht, M., Roth, A. & Sakmann, B. Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J. Physiol. (Lond.)553, 243–265 (2003). ArticleCAS Google Scholar
Petersen, C.C., Hahn, T.T., Mehta, M., Grinvald, A. & Sakmann, B. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc. Natl. Acad. Sci. USA100, 13638–13643 (2003). ArticleCAS Google Scholar
Sachdev, R.N., Ebner, F.F. & Wilson, C.J. Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J. Neurophysiol.92, 3511–3521 (2004). Article Google Scholar
Stuart, G. & Sakmann, B. Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron15, 1065–1076 (1995). ArticleCAS Google Scholar
Lendvai, B., Stern, E.A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature404, 876–881 (2000). ArticleCAS Google Scholar
Micheva, K.D. & Beaulieu, C. Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J. Comp. Neurol.373, 340–354 (1996). ArticleCAS Google Scholar
Holtmaat, A.J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron45, 279–291 (2005). ArticleCAS Google Scholar
Zuo, Y., Yang, G., Kwon, E. & Gan, W.B. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature436, 261–265 (2005). ArticleCAS Google Scholar
Feldmeyer, D., Lubke, J., Silver, R.A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. (Lond.)538, 803–822 (2002). ArticleCAS Google Scholar
Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat. Rev. Neurosci.5, 24–34 (2004). ArticleCAS Google Scholar
Zuo, Y., Lin, A., Chang, P. & Gan, W.B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron46, 181–189 (2005). ArticleCAS Google Scholar
Feldman, D.E. & Brecht, M. Map plasticity in somatosensory cortex. Science310, 810–815 (2005). ArticleCAS Google Scholar
Reiter, H.O. & Stryker, M.P. Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. Proc. Natl. Acad. Sci. USA85, 3623–3627 (1988). ArticleCAS Google Scholar
Bear, M.F., Kleinschmidt, A., Gu, Q.A. & Singer, W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci.10, 909–925 (1990). ArticleCAS Google Scholar
Schlaggar, B.L., Fox, K. & O'Leary, D.D. Postsynaptic control of plasticity in developing somatosensory cortex. Nature364, 623–626 (1993). ArticleCAS Google Scholar
Ruthazer, E.S. You're perfect, now change–redefining the role of developmental plasticity. Neuron45, 825–828 (2005). ArticleCAS Google Scholar
Schuett, S., Bonhoeffer, T. & Hubener, M. Pairing-induced changes of orientation maps in cat visual cortex. Neuron32, 325–337 (2001). ArticleCAS Google Scholar
Meliza, C.D. & Dan, Y. Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron49, 183–189 (2006). ArticleCAS Google Scholar
Allen, C.B., Celikel, T. & Feldman, D.E. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat. Neurosci.6, 291–299 (2003). ArticleCAS Google Scholar
Celikel, T., Szostak, V.A. & Feldman, D.E. Modulation of spike timing by sensory deprivation during induction of cortical map plasticity. Nat. Neurosci.7, 534–541 (2004). ArticleCAS Google Scholar
Lisman, J. & Spruston, N. Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nat. Neurosci.8, 839–841 (2005). ArticleCAS Google Scholar