Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions (original) (raw)
References
Christianson, S.A. Handbook of Emotion and Memory: Current Research and Theory (Erlbaum, Hillsdale, New Jersey, 1992). Google Scholar
Cahill, L., Babinsky, R., Markowitsch, H.J. & McGaugh, J.L. The amygdala and emotional memory. Nature377, 295–296 (1995). ArticleCAS Google Scholar
Adolphs, R., Cahill, L., Schul, R. & Babinsky, R. Impaired declarative memory for emotional material following bilateral amygdala damage in humans. Learn. Mem.4, 291–300 (1997). ArticleCAS Google Scholar
Adolphs, R., Tranel, D. & Buchanan, T.W. Amygdala damage impairs emotional memory for gist but not details of complex stimuli. Nat. Neurosci.8, 512–518 (2005). ArticleCAS Google Scholar
McGaugh, J.L. et al. Involvement of the amygdaloid complex in neuromodulatory influences on memory storage. Neurosci. Biobehav. Rev.14, 425–431 (1990). ArticleCAS Google Scholar
Roozendaal, B. & McGaugh, J.L. Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiol. Learn. Mem.65, 1–8 (1996). ArticleCAS Google Scholar
Phelps, E.A. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr. Opin. Neurobiol.14, 198–202 (2004). ArticleCAS Google Scholar
Anderson, A.K. & Phelps, E.A. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature411, 305–309 (2001). ArticleCAS Google Scholar
Phelps, E.A. & LeDoux, J.E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron48, 175–187 (2005). ArticleCAS Google Scholar
Cahill, L. et al. Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc. Natl. Acad. Sci. USA93, 8016–8021 (1996). ArticleCAS Google Scholar
Hamann, S.B., Ely, T.D., Grafton, S.T. & Kilts, C.D. Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nat. Neurosci.2, 289–293 (1999). ArticleCAS Google Scholar
LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci.23, 155–184 (2000). ArticleCAS Google Scholar
Cahill, L. & McGaugh, J.L. Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci.21, 294–299 (1998). ArticleCAS Google Scholar
Packard, M.G., Cahill, L. & McGaugh, J.L. Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. Proc. Natl. Acad. Sci. USA91, 8477–8481 (1994). ArticleCAS Google Scholar
Quirarte, G.L., Roozendaal, B. & McGaugh, J.L. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA94, 14048–14053 (1997). ArticleCAS Google Scholar
Ferry, B., Roozendaal, B. & McGaugh, J.L. Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: a critical involvement of the amygdala. Biol. Psychiatry46, 1140–1152 (1999). ArticleCAS Google Scholar
Roozendaal, B., Okuda, S., Van der Zee, E.A. & McGaugh, J.L. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA103, 6741–6746 (2006). ArticleCAS Google Scholar
Pelletier, J.G., Likhtik, E., Filali, M. & Pare, D. Lasting increases in basolateral amygdala activity after emotional arousal: implications for facilitated consolidation of emotional memories. Learn. Mem.12, 96–102 (2005). Article Google Scholar
Seager, M.A., Asaka, Y. & Berry, S.D. Scopolamine disruption of behavioral and hippocampal responses in appetitive trace classical conditioning. Behav. Brain Res.100, 143–151 (1999). ArticleCAS Google Scholar
Ferry, B., Wirth, S. & Di Scala, G. Functional interaction between entorhinal cortex and basolateral amygdala during trace conditioning of odor aversion in the rat. Behav. Neurosci.113, 118–125 (1999). ArticleCAS Google Scholar
Munera, A., Gruart, A., Munoz, M.D. & Delgado-Garcia, J.M. Scopolamine impairs information processing in the hippocampus and performance of a learned eyeblink response in alert cats. Neurosci. Lett.292, 33–36 (2000). ArticleCAS Google Scholar
Ryou, J.W., Cho, S.Y. & Kim, H.T. Lesions of the entorhinal cortex impair acquisition of hippocampal-dependent trace conditioning. Neurobiol. Learn. Mem.75, 121–127 (2001). ArticleCAS Google Scholar
Baxter, M.G. & Murray, E.A. The amygdala and reward. Nat. Rev. Neurosci.3, 563–573 (2002). ArticleCAS Google Scholar
Smith, Y. & Pare, D. Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry. J. Comp. Neurol.342, 232–248 (1994). ArticleCAS Google Scholar
Pitkanen, A., Pikkarainen, M., Nurminen, N. & Ylinen, A. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann. NY Acad. Sci.911, 369–391 (2000). ArticleCAS Google Scholar
Witter, M.P. & Groenewegen, H.J. Connections of the parahippocampal cortex in the cat. III. Cortical and thalamic efferents. J. Comp. Neurol.252, 1–31 (1986). ArticleCAS Google Scholar
Burwell, R.D. & Witter, M.P. Basic anatomy of the parahippocampal region in monkeys and rats. in The Parahippocampal Region. (eds. Witter, M.P. & Wouterlood, F.) Ch. 3, 53–59 (Oxford University Press, New York, 2002). Google Scholar
Suzuki, W.A. & Eichenbaum, H. The neurophysiology of memory. Ann. NY Acad. Sci.911, 175–191 (2000). ArticleCAS Google Scholar
Sutherland, G.R. & McNaughton, B. Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr. Opin. Neurobiol.10, 180–186 (2000). ArticleCAS Google Scholar
Squire, L.R., Stark, C.E. & Clark, R.E. The medial temporal lobe. Annu. Rev. Neurosci.27, 279–306 (2004). ArticleCAS Google Scholar
Pelletier, J.G., Apergis, J. & Pare, D. Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex. J. Neurophysiol.91, 2079–2089 (2004). Article Google Scholar
Pelletier, J.G., Apergis-Schoute, J. & Pare, D. Interaction between amygdala and neocortical inputs in the perirhinal cortex. J. Neurophysiol.94, 1837–1848 (2005). Article Google Scholar
Palm, G., Aertsen, A.M. & Gerstein, G.L. On the significance of correlations among neuronal spike trains. Biol. Cybern.59, 1–11 (1988). ArticleCAS Google Scholar
Prut, Y. et al. Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol.79, 2857–2874 (1998). ArticleCAS Google Scholar
Kajiwara, R., Takashima, I., Mimura, Y., Witter, M.P. & Iijima, T. Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal-hippocampal circuit. J. Neurophysiol.89, 2176–2184 (2003). Article Google Scholar
Muir, G.M. & Bilkey, D.K. Theta- and movement velocity-related firing of hippocampal neurons is disrupted by lesions centered on the perirhinal cortex. Hippocampus13, 93–108 (2003). Article Google Scholar
Leutgeb, S., Leutgeb, J.K., Moser, M.B. & Moser, E.I. Place cells, spatial maps and the population code for memory. Curr. Opin. Neurobiol.15, 738–746 (2005). ArticleCAS Google Scholar
Buckley, M.J. & Gaffan, D. Perirhinal cortex ablation impairs configural learning and paired-associate learning equally. Neuropsychologia36, 535–546 (1998). ArticleCAS Google Scholar
Bussey, T.J., Saksida, L.M. & Murray, E.A. Perirhinal cortex resolves feature ambiguity in complex visual discriminations. Eur. J. Neurosci.15, 365–374 (2002). Article Google Scholar
Murray, E.A. & Mishkin, M. Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy. J. Neurosci.6, 1991–2003 (1986). ArticleCAS Google Scholar
Brown, M.W. & Bashir, Z.I. Evidence concerning how neurons of the perirhinal cortex may effect familiarity discrimination. Phil. Trans. R. Soc. Lond. B357, 1083–1095 (2002). ArticleCAS Google Scholar
Witter, M.P., Wouterlood, F.G., Naber, P.A. & Van Haeften, T. Anatomical organization of the parahippocampal-hippocampal network. Ann. NY Acad. Sci.911, 1–24 (2000). ArticleCAS Google Scholar
de Curtis, M. & Pare, D. The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog. Neurobiol.74, 101–110 (2004). Article Google Scholar
Biella, G., Uva, L. & de Curtis, M. Propagation of neuronal activity along the neocortical-perirhinal-entorhinal pathway in the guinea pig. J. Neurosci.22, 9972–9979 (2002). ArticleCAS Google Scholar
Pinto, A., Fuentes, C. & Pare, D. Feedforward inhibition regulates perirhinal transmission of neocortical inputs to the entorhinal cortex: ultrastructural study in guinea pigs. J. Comp. Neurol.495, 722–734 (2006). Article Google Scholar
Roesler, R., Roozendaal, B. & McGaugh, J.L. Basolateral amygdala lesions block the memory-enhancing effect of 8-Br-cAMP infused into the entorhinal cortex of rats after training. Eur. J. Neurosci.15, 905–910 (2002). Article Google Scholar
Luft, T., Pereira, G.S., Cammarota, M. & Izquierdo, I. Different time course for the memory facilitating effect of bicuculline in hippocampus, entorhinal cortex, and posterior parietal cortex of rats. Neurobiol. Learn. Mem.82, 52–56 (2004). ArticleCAS Google Scholar
Holland, P.C. & Gallagher, M. Amygdala circuitry in attentional and representational processes. Trends Cogn. Sci.3, 65–73 (1999). ArticleCAS Google Scholar
Everitt, B.J., Cardinal, R.N., Parkinson, J.A. & Robbins, T.W. Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann. NY Acad. Sci.985, 233–250 (2003). Article Google Scholar
Murray, E.A., Graham, K.S. & Gaffan, D. Perirhinal cortex and its neighbours in the medial temporal lobe: contributions to memory and perception. Q. J. Exp. Psychol. B58, 378–396 (2005). Article Google Scholar