Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic (original) (raw)
Kessler, R.C., Chiu, W.T., Demler, O., Merikangas, K.R. & Walters, E.E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry62, 617–627 (2005). PubMedPubMed Central Google Scholar
Keller, M.B. et al. Time to recovery, chronicity, and levels of psychopathology in major depression. A 5-year prospective follow-up of 431 subjects. Arch. Gen. Psychiatry49, 809–816 (1992). CASPubMed Google Scholar
Greenberg, P. et al. The economic burden of anxiety disorders in the 1990s. J. Clin. Psychiatry60, 427–435 (1999). CASPubMed Google Scholar
Gorman, J.M. Comorbid depression and anxiety spectrum disorders. Depress. Anxiety4, 160–168 (1996). PubMed Google Scholar
Ressler, K.J. & Nemeroff, C.B. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress. Anxiety12, 2–19 (2000). PubMed Google Scholar
Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science311, 864–868 (2006). ArticleCASPubMed Google Scholar
Bornstein, S.R., Schuppenies, A., Wong, M.L. & Licinio, J. Approaching the shared biology of obesity and depression: the stress axis as the locus of gene-environment interactions. Mol. Psychiatry11, 892–902 (2006). CASPubMed Google Scholar
Nestler, E.J. & Carlezon, W.A., Jr. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry59, 1151–1159 (2006). CASPubMed Google Scholar
Tremblay, L.K. et al. Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch. Gen. Psychiatry62, 1228–1236 (2005). PubMed Google Scholar
Schlaepfer, T.E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology, advance online publication 11 April 2007 (doi: 10.1038/sj.npp.1301408). PubMed Google Scholar
Mayberg, H.S. Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br. Med. Bull.65, 193–207 (2003). PubMed Google Scholar
Mayberg, H.S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry156, 675–682 (1999). CASPubMed Google Scholar
Drevets, W.C. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog. Brain Res.126, 413–431 (2000). CASPubMed Google Scholar
Milad, M.R. et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry, published online 9 January 2007 (doi:10.1016/j.biopsych.2006.10.011). PubMed Google Scholar
Siegle, G.J., Carter, C.S. & Thase, M.E. Use of FMRI to predict recovery from unipolar depression with cognitive behavior therapy. Am. J. Psychiatry163, 735–738 (2006). PubMed Google Scholar
Furmark, T. et al. Common changes in cerebral blood flow in patients with social phobia treated with citalopram or cognitive-behavioral therapy. Arch. Gen. Psychiatry59, 425–433 (2002). PubMed Google Scholar
Drevets, W.C. Neuroimaging studies of mood disorders. Biol. Psychiatry48, 813–829 (2000). CASPubMed Google Scholar
Canli, T. & Lesch, K.-P. Long story short: the serotonin transporter in emotion regulation and social cognition. Nat. Neurosci.10, 1103–1109 (2007). CASPubMed Google Scholar
Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci.8, 828–834 (2005). CASPubMed Google Scholar
George, M.S. et al. Vagus nerve stimulation for the treatment of depression and other neuropsychiatric disorders. Expert Rev. Neurother.7, 63–74 (2007). PubMed Google Scholar
Henry, T.R. et al. Brain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects at high and low levels of stimulation. Epilepsia39, 983–990 (1998). CASPubMed Google Scholar
Ben-Menachem, E. et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res.20, 221–227 (1995). CASPubMed Google Scholar
Krahl, S.E., Senanayake, S.S. & Handforth, A. Seizure suppression by systemic epinephrine is mediated by the vagus nerve. Epilepsy Res.38, 171–175 (2000). CASPubMed Google Scholar
Walker, B.R., Easton, A. & Gale, K. Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius. Epilepsia40, 1051–1057 (1999). CASPubMed Google Scholar
Craig, A.D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci.3, 655–666 (2002). CASPubMed Google Scholar
Henry, T.R. Therapeutic mechanisms of vagus nerve stimulation. Neurology59, S3–S14 (2002). PubMed Google Scholar
Cox, C.L., Huguenard, J.R. & Prince, D.A. Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus. Proc. Natl. Acad. Sci. USA94, 8854–8859 (1997). CASPubMedPubMed Central Google Scholar
Malow, B.A. et al. Vagus nerve stimulation reduces daytime sleepiness in epilepsy patients. Neurology57, 879–884 (2001). CASPubMed Google Scholar
Zobel, A. et al. Changes in regional cerebral blood flow by therapeutic vagus nerve stimulation in depression: an exploratory approach. Psychiatry Res.139, 165–179 (2005). PubMed Google Scholar
Bohning, D.E. et al. Feasibility of vagus nerve stimulation-synchronized blood oxygenation level-dependent functional MRI. Invest. Radiol.36, 470–479 (2001). CASPubMed Google Scholar
Nahas, Z. et al. Serial vagus nerve stimulation functional MRI in treatment-resistant depression. Neuropsychopharmacology,32, 1649–1660 (2007). CAS Google Scholar
Sackeim, H.A. et al. Durability of antidepressant response to vagus nerve stimulation (VNSTM). Int. J. Neuropsychopharmacol., published online 9 February 2007 (doi:10.1017/S1461145706007425).
Lisanby, S.H. et al. New developments in electroconvulsive therapy and magnetic seizure therapy. CNS Spectr.8, 529–536 (2003). PubMed Google Scholar
Sackeim, H.A. et al. Cognitive consequences of low-dosage electroconvulsive therapy. Ann. NY Acad. Sci.462, 326–340 (1986). CASPubMed Google Scholar
Carpenter, L.L. Neurostimulation in resistant depression. J. Psychopharmacol.20, 35–40 (2006). PubMed Google Scholar
Epstein, C.M., Schwartzberg, D.G., Davey, K.R. & Sudderth, D.B. Localizing the site of magnetic brain stimulation in humans. Neurology40, 666–670 (1990). CASPubMed Google Scholar
Barker, A.T., Jalinous, R. & Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet1, 1106–1107 (1985). CASPubMed Google Scholar
Paus, T. & Barrett, J. Transcranial magnetic stimulation (TMS) of the human frontal cortex: implications for repetitive TMS treatment of depression. J. Psychiatry Neurosci.29, 268–279 (2004). PubMedPubMed Central Google Scholar
Pascual-Leone, A., Rubio, B., Pallardo, F. & Catala, M.D. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet348, 233–237 (1996). CASPubMed Google Scholar
George, M.S. et al. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial. Am. J. Psychiatry154, 1752–1756 (1997). CASPubMed Google Scholar
Herrmann, L.L. & Ebmeier, K.P. Factors modifying the efficacy of transcranial magnetic stimulation in the treatment of depression: a review. J. Clin. Psychiatry67, 1870–1876 (2006). PubMed Google Scholar
Couturier, J.L. Efficacy of rapid-rate repetitive transcranial magnetic stimulation in the treatment of depression: a systematic review and meta-analysis. J. Psychiatry Neurosci.30, 83–90 (2005). PubMedPubMed Central Google Scholar
O'Reardon, J.P. et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol. Psychiatry, published online 14 June 2007 (doi:10.1016/j.biopsych.2007.01.018). PubMed Google Scholar
Bohning, D.E. et al. Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. Neuroreport8, 2535–2538 (1997). CASPubMed Google Scholar
Kimbrell, T.A. et al. Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol. Psychiatry46, 1603–1613 (1999). CASPubMed Google Scholar
Speer, A.M. et al. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol. Psychiatry48, 1133–1141 (2000). CASPubMed Google Scholar
Kim, E.J. et al. Repetitive transcranial magnetic stimulation protects hippocampal plasticity in an animal model of depression. Neurosci. Lett.405, 79–83 (2006). CASPubMed Google Scholar
Kosel, M., Frick, C., Lisanby, S.H., Fisch, H.U. & Schlaepfer, T.E. Magnetic seizure therapy improves mood in refractory major depression. Neuropsychopharmacology28, 2045–2048 (2003). PubMed Google Scholar
Benabid, A.L. Deep brain stimulation for Parkinson's disease. Curr. Opin. Neurobiol.13, 696–706 (2003). CASPubMed Google Scholar
Bejjani, B.P. et al. Transient acute depression induced by high-frequency deep-brain stimulation. N. Engl. J. Med.340, 1476–1480 (1999). CASPubMed Google Scholar
Kopell, B.H., Greenberg, B. & Rezai, A.R. Deep brain stimulation for psychiatric disorders. J. Clin. Neurophysiol.21, 51–67 (2004). PubMed Google Scholar
Aouizerate, B. et al. Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression. Case report. J. Neurosurg.101, 682–686 (2004). PubMed Google Scholar
Brody, A.L. et al. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch. Gen. Psychiatry58, 631–640 (2001). CASPubMed Google Scholar
Seminowicz, D.A. et al. Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage22, 409–418 (2004). CASPubMed Google Scholar
Dougherty, D.D. et al. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J. Neurosurg.99, 1010–1017 (2003). PubMed Google Scholar
Goldapple, K. et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry61, 34–41 (2004). PubMed Google Scholar
Nobler, M.S. et al. Structural and functional neuroimaging of electroconvulsive therapy and transcranial magnetic stimulation. Depress. Anxiety12, 144–156 (2000). CASPubMed Google Scholar
Mayberg, H.S. et al. Deep brain stimulation for treatment-resistant depression. Neuron45, 651–660 (2005). CASPubMed Google Scholar
Davis, K.D. et al. Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nat. Med.3, 671–674 (1997). CASPubMed Google Scholar
Lozano, A.M., Dostrovsky, J., Chen, R. & Ashby, P. Deep brain stimulation for Parkinson's disease: disrupting the disruption. Lancet Neurol.1, 225–231 (2002). PubMed Google Scholar
McIntyre, C.C., Savasta, M., Kerkerian-Le Goff, L. & Vitek, J.L. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin. Neurophysiol.115, 1239–1248 (2004). PubMed Google Scholar
Harbishettar, V., Pal, P.K., Janardhan Reddy, Y.C. & Thennarasu, K. Is there a relationship between Parkinson's disease and obsessive-compulsive disorder? Parkinsonism Relat. Disord.11, 85–88 (2005). PubMed Google Scholar
Nuttin, B., Cosyns, P., Demeulemeester, H., Gybels, J. & Meyerson, B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet354, 1526 (1999). CASPubMed Google Scholar
Greenberg, B.D. et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology31, 2384–2393 (2006). PubMed Google Scholar
Pitman, R.K. & Delahanty, D.L. Conceptually driven pharmacologic approaches to acute trauma. CNS Spectr.10, 99–106 (2005). PubMed Google Scholar
Rothbaum, B.O. & Davis, M. Applying learning principles to the treatment of post-trauma reactions. Ann. NY Acad. Sci.1008, 112–121 (2003). PubMed Google Scholar
Myers, K.M. & Davis, M. Behavioral and neural analysis of extinction. Neuron36, 567–584 (2002). CASPubMed Google Scholar
Walker, D.L., Ressler, K.J., Lu, K.T. & Davis, M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear- potentiated startle in rats. J. Neurosci.22, 2343–2351 (2002). CASPubMedPubMed Central Google Scholar
Monahan, J.B., Handelmann, G.E., Hood, W.F. & Cordi, A.A. D-cycloserine, a positive modulator of the _N_-methyl-D-aspartate receptor, enhances performance of learning tasks in rats. Pharmacol. Biochem. Behav.34, 649–653 (1989). CASPubMed Google Scholar
Lee, J.L., Milton, A.L. & Everitt, B.J. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J. Neurosci.26, 10051–10056 (2006). CASPubMedPubMed Central Google Scholar
Botreau, F., Paolone, G. & Stewart, J. D-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav. Brain Res.172, 173–178 (2006). CASPubMed Google Scholar
Ledgerwood, L., Richardson, R. & Cranney, J. Effects of D-cycloserine on extinction of conditioned freezing. Behav. Neurosci.117, 341–349 (2003). CASPubMed Google Scholar
Yang, Y.L. & Lu, K.T. Facilitation of conditioned fear extinction by D-cycloserine is mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase cascades and requires de novo protein synthesis in basolateral nucleus of amygdala. Neuroscience134, 247–260 (2005). CASPubMed Google Scholar
Otto, M. Learning and “unlearning” fears: preparedness, neural pathways, and patients. Biol. Psychiatry52, 917–920 (2002). PubMed Google Scholar
Ressler, K.J. et al. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch. Gen. Psychiatry61, 1136–1144 (2004). PubMed Google Scholar
Hofmann, S.G. et al. Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. Arch. Gen. Psychiatry63, 298–304 (2006). CASPubMed Google Scholar
Kushner, M.G. et al. D-Cycloserine augmented exposure therapy for obsessive compulsive disorder. Biol. Psychiatry, published online 22 June 2007 (doi:10.1016/j.biopsych.2006.12.020). CASPubMed Google Scholar
Guastella, A.J., Dadds, M.R., Lovibond, P.F., Mitchell, P. & Richardson, R. A randomized controlled trial of the effect of D-cycloserine on exposure therapy for spider fear. J. Psychiatr. Res.41, 466–471 (2007). PubMed Google Scholar
Guastella, A.J., Lovibond, P.F., Dadds, M.R., Mitchell, P. & Richardson, R. A randomized controlled trial of the effect of D-cycloserine on extinction and fear conditioning in humans. Behav. Res. Ther.45, 663–672 (2007). PubMed Google Scholar
McGaugh, J.L. Memory–a century of consolidation. Science287, 248–251 (2000). CASPubMed Google Scholar
Ferry, B., Roozendaal, B. & McGaugh, J.L. Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between β- and α1-adrenoceptors. J. Neurosci.19, 5119–5123 (1999). CASPubMedPubMed Central Google Scholar
Quirarte, G.L., Roozendaal, B. & McGaugh, J.L. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc. Natl. Acad. Sci. USA94, 14048–14053 (1997). CASPubMedPubMed Central Google Scholar
Pitman, R.K. et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol. Psychiatry51, 189–192 (2002). CASPubMed Google Scholar
Vaiva, G. et al. Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biol. Psychiatry54, 947–949 (2003). CASPubMed Google Scholar
Yehuda, R. et al. Low urinary cortisol excretion in Holocaust survivors with posttraumatic stress disorder. Am. J. Psychiatry152, 982–986 (1995). CASPubMed Google Scholar
Yehuda, R., Golier, J.A., Yang, R.K. & Tischler, L. Enhanced sensitivity to glucocorticoids in peripheral mononuclear leukocytes in posttraumatic stress disorder. Biol. Psychiatry55, 1110–1116 (2004). CASPubMed Google Scholar
Borrell, J., De Kloet, E.R., Versteeg, D.H. & Bohus, B. Inhibitory avoidance deficit following short-term adrenalectomy in the rat: the role of adrenal catecholamines. Behav. Neural Biol.39, 241–258 (1983). CASPubMed Google Scholar
Schelling, G. et al. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder in survivors. Biol. Psychiatry50, 978–985 (2001). CASPubMed Google Scholar
Cai, W.H., Blundell, J., Han, J., Greene, R.W. & Powell, C.M. Postreactivation glucocorticoids impair recall of established fear memory. J. Neurosci.26, 9560–9566 (2006). CASPubMedPubMed Central Google Scholar
Tronel, S. & Alberini, C.M. Persistent disruption of a traumatic memory by postretrieval inactivation of glucocorticoid receptors in the amygdala. Biol. Psychiatry62, 33–39 (2007). CASPubMedPubMed Central Google Scholar
Schafe, G.E., Nader, K., Blair, H.T. & LeDoux, J.E. Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci.24, 540–546 (2001). CASPubMed Google Scholar
Guarraci, F.A., Frohardt, R.J., Falls, W.A. & Kapp, B.S. The effects of intra-amygdaloid infusions of a D2 dopamine receptor antagonist on Pavlovian fear conditioning. Behav. Neurosci.114, 647–651 (2000). CASPubMed Google Scholar
Shimizu, E., Tang, Y.P., Rampon, C. & Tsien, J.Z. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science290, 1170–1174 (2000). CASPubMed Google Scholar
Nader, K., Schafe, G.E. & Le Doux, J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature406, 722–726 (2000). CASPubMed Google Scholar
Przybyslawski, J., Roullet, P. & Sara, S.J. Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J. Neurosci.19, 6623–6628 (1999). CASPubMedPubMed Central Google Scholar
Przybyslawski, J. & Sara, S.J. Reconsolidation of memory after its reactivation. Behav. Brain Res.84, 241–246 (1997). CASPubMed Google Scholar
Debiec, J. & Ledoux, J.E. Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience129, 267–272 (2004). CASPubMed Google Scholar
Eisenberg, M. & Dudai, Y. Reconsolidation of fresh, remote, and extinguished fear memory in medaka: old fears don't die. Eur. J. Neurosci.20, 3397–3403 (2004). PubMed Google Scholar
Paulus, M.P., Feinstein, J.S., Castillo, G., Simmons, A.N. & Stein, M.B. Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch. Gen. Psychiatry62, 282–288 (2005). CASPubMed Google Scholar
Dostrovsky, J.O. et al. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J. Neurophysiol.84, 570–574 (2000). CASPubMed Google Scholar