Sodium pumps adapt spike bursting to stimulus statistics (original) (raw)

References

  1. Barlow, H.B. & Mollon, J.D. The Senses (Cambridge University Press, Cambridge, UK, 1982).
    Google Scholar
  2. Walraven, J., Enroth-Cugell, C., Hood, D.C., MacLeod, D.I.A. & Schnapf, J.L. The control of visual sensitivity. in Visual Perception: The Neurophysiological Foundations (eds. Spillmann, L., Werner, J.S.) 53–101 (Academic Press, New York, 1990).
    Google Scholar
  3. Shapley, R. Retinal physiology: adapting to the changing scene. Curr. Biol. 7, R421–R423 (1997).
    CAS PubMed Google Scholar
  4. Meister, M. & Berry, M.J., II The neural code of the retina. Neuron 22, 435–450 (1999).
    CAS PubMed Google Scholar
  5. Smirnakis, S.M., Berry, M.J., Warland, D.K., Bialek, W. & Meister, M. Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69–73 (1997).
    CAS PubMed Google Scholar
  6. DeWeese, M. & Zador, A. Asymmetric dynamics in optimal variance adaptation. Neural Comput. 10, 1179–1202 (1998).
    Google Scholar
  7. Brenner, N., Bialek, W. & de Ruyter van Steveninck, R.R. Adaptive rescaling maximizes information transmission. Neuron 26, 695–702 (2000).
    CAS PubMed Google Scholar
  8. Fairhall, A.L., Lewen, G., Bialek, W. & de Ruyter van Steveninck, R.R. Efficiency and ambiguity in an adaptive neural code. Nature 412, 787–792 (2001).
    CAS PubMed Google Scholar
  9. Maravall, M., Petersen, R.S., Fairhall, A.L., Arabzadeh, E. & Diamond, M.E. Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol. 5, e19 (2007).
    PubMed PubMed Central Google Scholar
  10. Kvale, M.N. & Schreiner, C.E. Adaptation of auditory receptive fields to dynamic stimuli. J. Neurophysiol. 91, 604–612 (2004).
    PubMed Google Scholar
  11. Sharpee, T.O. et al. Adaptive filtering enhances information transmission in the visual cortex. Nature 439, 936–942 (2006).
    CAS PubMed PubMed Central Google Scholar
  12. Abbott, L.F., Sen, K., Varela, J.A. & Nelson, S.B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).
    CAS PubMed Google Scholar
  13. Tsodyks, M.V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).
    CAS PubMed Google Scholar
  14. Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95, 5323–5328 (1998).
    CAS PubMed Google Scholar
  15. Stemmler, M. & Koch, C. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nat. Neurosci. 2, 521–527 (1999).
    CAS PubMed Google Scholar
  16. Fairhall, A. & Bialek, W. Adaptive spike coding. in The Handbook of Brain Theory and Neural Networks 2nd edn. (ed. Arbib, M.A.) 90–94 (MIT Press, Cambridge, 2002).
    Google Scholar
  17. Gilboa, G., Chen, R. & Brenner, N. History-dependent multiple–time scale dynamics in a single-neuron model. J. Neurosci. 25, 6479–6489 (2005).
    CAS PubMed Google Scholar
  18. Rieke, F. Temporal contrast adaptation in salamander bipolar cells. J. Neurosci. 21, 9445–9454 (2001).
    CAS PubMed Google Scholar
  19. Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J. Neurosci. 20, 4286–4299 (2000).
    CAS PubMed Google Scholar
  20. Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J. Neurosci. 20, 4267–4285 (2000).
    CAS PubMed Google Scholar
  21. Kim, K.J. & Rieke, F. Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. J. Neurosci. 23, 1506–1516 (2003).
    CAS PubMed Google Scholar
  22. Shen, K.Z. & Johnson, S.W. Sodium pump evokes high-density pump current in rat midbrain dopamine neurons. J. Physiol. (Lond.) 512, 449–457 (1998).
    CAS Google Scholar
  23. Darbon, P., Tscherter, A., Yvon, C. & Streit, J. Role of the electrogenic Na/K pump in deinhibition-induced bursting in cultured spinal networks. J. Neurophysiol. 90, 3119–3129 (2003).
    CAS PubMed Google Scholar
  24. Gustafsson, B. & Wigstom, H. Hyperpolarization following long-lasting tetanus activation of pyramidal hippocampal cells. Brain Res. 275, 159–163 (1983).
    CAS PubMed Google Scholar
  25. Vaillend, C., Mason, S.E., Cuttle, M.F. & Alger, B.E. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+–ATPases in the rat CA1 hippocampal region. J. Neurophysiol. 88, 2963–2978 (2002).
    CAS PubMed Google Scholar
  26. Kobayashi, J., Ohta, M. & Terada, Y. Evidence for the involvement of Na+-K+ pump and K+ conductance in the posttetanic hyperpolarization of the tetrodoxin-resistant C-fibers in the islated bullfrog sciatic nerve. Neurosci. Lett. 236, 171–174 (1997).
    CAS PubMed Google Scholar
  27. French, A.S. Two components of rapid sensory adaptation in a cockroach mechanoreceptor neuron. J. Neurophysiol. 62, 768–777 (1989).
    CAS PubMed Google Scholar
  28. Kiernan, M.C., Lin, C.S. & Burke, D. Differences in activity-dependent hyperpolarization in human sensory and motor axons. J. Physiol. (Lond.) 558, 341–349 (2004).
    CAS Google Scholar
  29. Baylor, D.A. & Nicholls, J.G. After-effects of nerve impulses on signalling in the central nervous system of the leech. J. Physiol. (Lond.) 203, 571–589 (1969).
    CAS Google Scholar
  30. Jansen, J.K. & Nicholls, J.G. Conductance changes, an electrogenic pump and the hyperpolarization of leech neurons following impulses. J. Physiol. (Lond.) 229, 635–655 (1973).
    CAS Google Scholar
  31. Van Essen, D.C. The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurones of the leech. J. Physiol. (Lond.) 230, 509–534 (1973).
    CAS Google Scholar
  32. Scuri, R., Mozzachiodi, R. & Brunelli, M. Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech. J. Neurophysiol. 88, 2490–2500 (2002).
    CAS PubMed Google Scholar
  33. Scuri, R., Mozzachiodi, R. & Brunelli, M. Role for calcium signaling and arachidonic acid metabolites in the activity-dependent increase of AHP amplitude in leech T sensory neurons. J. Neurophysiol. 94, 1066–1073 (2005).
    CAS PubMed Google Scholar
  34. Mar, A. & Drapeau, P. Modulation of conduction block in leech mechanosensory neurons. J. Neurosci. 16, 4335–4343 (1996).
    CAS PubMed Google Scholar
  35. Catarsi, S. & Brunelli, M. Serotonin depresses the after-hyperpolarization through the inhibition of the Na+/K+ ATPase in the sensory neurones of the leech. J. Exp. Biol. 155, 261–273 (1991).
    CAS PubMed Google Scholar
  36. Catarsi, S., Garcia-Gil, M., Traina, G. & Brunelli, M. Seasonal variation of serotonin content and non-associative learning of swim induction in the leech Hirudo medicinalis. J. Comp. Physiol. A 167, 469–474 (1990).
    CAS PubMed Google Scholar
  37. Schlue, W.R. Effects of ouabain on intracellular ion activities of sensory neurons of the leech central nervous system. J. Neurophysiol. 65, 736–746 (1991).
    CAS PubMed Google Scholar
  38. Krahe, R. & Gabbiani, F. Burst firing in sensory systems. Nat. Rev. Neurosci. 5, 13–23 (2004).
    CAS PubMed Google Scholar
  39. Gabbiani, F., Metzner, W., Wessel, R. & Koch, C. From stimulus encoding to feature extraction in weakly electric fish. Nature 384, 564–567 (1996).
    CAS PubMed Google Scholar
  40. Izhikevich, E.M., Desai, N.S., Walcott, E.C. & Hoppensteadt, F.C. Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci. 26, 161–167 (2003).
    CAS PubMed Google Scholar
  41. Lisman, J.E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997).
    CAS PubMed Google Scholar
  42. DeBusk, B.C., DeBruyn, E.J., Snider, R.K., Kabara, J.F. & Bonds, A.B. Stimulus-dependent modulation of spike burst length in cat striate cortical cells. J. Neurophysiol. 78, 199–213 (1997).
    CAS PubMed Google Scholar
  43. Middlebrooks, J.C., Clock, A.E., Xu, L. & Green, D.M. A panoramic code for sound location by cortical neurons. Science 264, 842–844 (1994).
    CAS PubMed Google Scholar
  44. Kepecs, A., Wang, X.J. & Lisman, J. Bursting neurons signal input slope. J. Neurosci. 22, 9053–9062 (2002).
    CAS PubMed Google Scholar
  45. Mozzachiodi, R., Scuri, R., Roberto, M. & Brunelli, M. Caulerpenyne, a toxin from the seaweed Caulerpa taxifolia, depresses afterhyperpolarization in invertebrate neurons. Neuroscience 107, 519–526 (2001).
    CAS PubMed Google Scholar
  46. Cataldo, E. et al. Computational model of touch sensory cells (T cells) of the leech: role of the afterhyperpolarization (AHP) in activity-dependent conduction failure. J. Comput. Neurosci. 18, 5–24 (2005).
    PubMed Google Scholar
  47. Livingstone, M.S., Freeman, D.C. & Hubel, D.H. Visual responses in V1 of freely viewing monkeys. Cold Spring Harb. Symp. Quant. Biol. 61, 27–37 (1996).
    CAS PubMed Google Scholar
  48. Chubbuck, J.G. Small-motion biological stimulator. Johns Hopkins APL Technical Digest 5, 18–23 (1966).
    Google Scholar
  49. Juusola, M. & French, A. The efficiency of sensory information coding in mechanical receptors. Neuron 18, 959–968 (1997).
    CAS PubMed Google Scholar
  50. Wang, X.J. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 79, 1549–1566 (1998).
    CAS PubMed Google Scholar

Download references