Sodium pumps adapt spike bursting to stimulus statistics (original) (raw)
References
Barlow, H.B. & Mollon, J.D. The Senses (Cambridge University Press, Cambridge, UK, 1982). Google Scholar
Walraven, J., Enroth-Cugell, C., Hood, D.C., MacLeod, D.I.A. & Schnapf, J.L. The control of visual sensitivity. in Visual Perception: The Neurophysiological Foundations (eds. Spillmann, L., Werner, J.S.) 53–101 (Academic Press, New York, 1990). Google Scholar
Shapley, R. Retinal physiology: adapting to the changing scene. Curr. Biol.7, R421–R423 (1997). CASPubMed Google Scholar
Meister, M. & Berry, M.J., II The neural code of the retina. Neuron22, 435–450 (1999). CASPubMed Google Scholar
Smirnakis, S.M., Berry, M.J., Warland, D.K., Bialek, W. & Meister, M. Adaptation of retinal processing to image contrast and spatial scale. Nature386, 69–73 (1997). CASPubMed Google Scholar
DeWeese, M. & Zador, A. Asymmetric dynamics in optimal variance adaptation. Neural Comput.10, 1179–1202 (1998). Google Scholar
Brenner, N., Bialek, W. & de Ruyter van Steveninck, R.R. Adaptive rescaling maximizes information transmission. Neuron26, 695–702 (2000). CASPubMed Google Scholar
Fairhall, A.L., Lewen, G., Bialek, W. & de Ruyter van Steveninck, R.R. Efficiency and ambiguity in an adaptive neural code. Nature412, 787–792 (2001). CASPubMed Google Scholar
Maravall, M., Petersen, R.S., Fairhall, A.L., Arabzadeh, E. & Diamond, M.E. Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol.5, e19 (2007). PubMedPubMed Central Google Scholar
Kvale, M.N. & Schreiner, C.E. Adaptation of auditory receptive fields to dynamic stimuli. J. Neurophysiol.91, 604–612 (2004). PubMed Google Scholar
Sharpee, T.O. et al. Adaptive filtering enhances information transmission in the visual cortex. Nature439, 936–942 (2006). CASPubMedPubMed Central Google Scholar
Abbott, L.F., Sen, K., Varela, J.A. & Nelson, S.B. Synaptic depression and cortical gain control. Science275, 220–224 (1997). CASPubMed Google Scholar
Tsodyks, M.V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA94, 719–723 (1997). CASPubMed Google Scholar
Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA95, 5323–5328 (1998). CASPubMed Google Scholar
Stemmler, M. & Koch, C. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nat. Neurosci.2, 521–527 (1999). CASPubMed Google Scholar
Fairhall, A. & Bialek, W. Adaptive spike coding. in The Handbook of Brain Theory and Neural Networks 2nd edn. (ed. Arbib, M.A.) 90–94 (MIT Press, Cambridge, 2002). Google Scholar
Gilboa, G., Chen, R. & Brenner, N. History-dependent multiple–time scale dynamics in a single-neuron model. J. Neurosci.25, 6479–6489 (2005). CASPubMed Google Scholar
Rieke, F. Temporal contrast adaptation in salamander bipolar cells. J. Neurosci.21, 9445–9454 (2001). CASPubMed Google Scholar
Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J. Neurosci.20, 4286–4299 (2000). CASPubMed Google Scholar
Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J. Neurosci.20, 4267–4285 (2000). CASPubMed Google Scholar
Kim, K.J. & Rieke, F. Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. J. Neurosci.23, 1506–1516 (2003). CASPubMed Google Scholar
Shen, K.Z. & Johnson, S.W. Sodium pump evokes high-density pump current in rat midbrain dopamine neurons. J. Physiol. (Lond.)512, 449–457 (1998). CAS Google Scholar
Darbon, P., Tscherter, A., Yvon, C. & Streit, J. Role of the electrogenic Na/K pump in deinhibition-induced bursting in cultured spinal networks. J. Neurophysiol.90, 3119–3129 (2003). CASPubMed Google Scholar
Gustafsson, B. & Wigstom, H. Hyperpolarization following long-lasting tetanus activation of pyramidal hippocampal cells. Brain Res.275, 159–163 (1983). CASPubMed Google Scholar
Vaillend, C., Mason, S.E., Cuttle, M.F. & Alger, B.E. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+–ATPases in the rat CA1 hippocampal region. J. Neurophysiol.88, 2963–2978 (2002). CASPubMed Google Scholar
Kobayashi, J., Ohta, M. & Terada, Y. Evidence for the involvement of Na+-K+ pump and K+ conductance in the posttetanic hyperpolarization of the tetrodoxin-resistant C-fibers in the islated bullfrog sciatic nerve. Neurosci. Lett.236, 171–174 (1997). CASPubMed Google Scholar
French, A.S. Two components of rapid sensory adaptation in a cockroach mechanoreceptor neuron. J. Neurophysiol.62, 768–777 (1989). CASPubMed Google Scholar
Kiernan, M.C., Lin, C.S. & Burke, D. Differences in activity-dependent hyperpolarization in human sensory and motor axons. J. Physiol. (Lond.)558, 341–349 (2004). CAS Google Scholar
Baylor, D.A. & Nicholls, J.G. After-effects of nerve impulses on signalling in the central nervous system of the leech. J. Physiol. (Lond.)203, 571–589 (1969). CAS Google Scholar
Jansen, J.K. & Nicholls, J.G. Conductance changes, an electrogenic pump and the hyperpolarization of leech neurons following impulses. J. Physiol. (Lond.)229, 635–655 (1973). CAS Google Scholar
Van Essen, D.C. The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurones of the leech. J. Physiol. (Lond.)230, 509–534 (1973). CAS Google Scholar
Scuri, R., Mozzachiodi, R. & Brunelli, M. Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech. J. Neurophysiol.88, 2490–2500 (2002). CASPubMed Google Scholar
Scuri, R., Mozzachiodi, R. & Brunelli, M. Role for calcium signaling and arachidonic acid metabolites in the activity-dependent increase of AHP amplitude in leech T sensory neurons. J. Neurophysiol.94, 1066–1073 (2005). CASPubMed Google Scholar
Mar, A. & Drapeau, P. Modulation of conduction block in leech mechanosensory neurons. J. Neurosci.16, 4335–4343 (1996). CASPubMed Google Scholar
Catarsi, S. & Brunelli, M. Serotonin depresses the after-hyperpolarization through the inhibition of the Na+/K+ ATPase in the sensory neurones of the leech. J. Exp. Biol.155, 261–273 (1991). CASPubMed Google Scholar
Catarsi, S., Garcia-Gil, M., Traina, G. & Brunelli, M. Seasonal variation of serotonin content and non-associative learning of swim induction in the leech Hirudo medicinalis. J. Comp. Physiol. A167, 469–474 (1990). CASPubMed Google Scholar
Schlue, W.R. Effects of ouabain on intracellular ion activities of sensory neurons of the leech central nervous system. J. Neurophysiol.65, 736–746 (1991). CASPubMed Google Scholar
Krahe, R. & Gabbiani, F. Burst firing in sensory systems. Nat. Rev. Neurosci.5, 13–23 (2004). CASPubMed Google Scholar
Gabbiani, F., Metzner, W., Wessel, R. & Koch, C. From stimulus encoding to feature extraction in weakly electric fish. Nature384, 564–567 (1996). CASPubMed Google Scholar
Izhikevich, E.M., Desai, N.S., Walcott, E.C. & Hoppensteadt, F.C. Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci.26, 161–167 (2003). CASPubMed Google Scholar
Lisman, J.E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci.20, 38–43 (1997). CASPubMed Google Scholar
DeBusk, B.C., DeBruyn, E.J., Snider, R.K., Kabara, J.F. & Bonds, A.B. Stimulus-dependent modulation of spike burst length in cat striate cortical cells. J. Neurophysiol.78, 199–213 (1997). CASPubMed Google Scholar
Middlebrooks, J.C., Clock, A.E., Xu, L. & Green, D.M. A panoramic code for sound location by cortical neurons. Science264, 842–844 (1994). CASPubMed Google Scholar
Kepecs, A., Wang, X.J. & Lisman, J. Bursting neurons signal input slope. J. Neurosci.22, 9053–9062 (2002). CASPubMed Google Scholar
Mozzachiodi, R., Scuri, R., Roberto, M. & Brunelli, M. Caulerpenyne, a toxin from the seaweed Caulerpa taxifolia, depresses afterhyperpolarization in invertebrate neurons. Neuroscience107, 519–526 (2001). CASPubMed Google Scholar
Cataldo, E. et al. Computational model of touch sensory cells (T cells) of the leech: role of the afterhyperpolarization (AHP) in activity-dependent conduction failure. J. Comput. Neurosci.18, 5–24 (2005). PubMed Google Scholar
Livingstone, M.S., Freeman, D.C. & Hubel, D.H. Visual responses in V1 of freely viewing monkeys. Cold Spring Harb. Symp. Quant. Biol.61, 27–37 (1996). CASPubMed Google Scholar
Juusola, M. & French, A. The efficiency of sensory information coding in mechanical receptors. Neuron18, 959–968 (1997). CASPubMed Google Scholar
Wang, X.J. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol.79, 1549–1566 (1998). CASPubMed Google Scholar