The representation of economic value in the orbitofrontal cortex is invariant for changes of menu (original) (raw)

References

  1. Fellows, L.K. The cognitive neuroscience of human decision making: a review and conceptual framework. Behav. Cogn. Neurosci. Rev. 3, 159–172 (2004).
    Article Google Scholar
  2. Glimcher, P.W., Dorris, M.C. & Bayer, H.M. Physiological utility theory and the neuroeconomics of choice. Games Econ. Behav. 52, 213–256 (2005).
    Article Google Scholar
  3. Padoa-Schioppa, C., Jandolo, L. & Visalberghi, E. Multi-stage mental process for economic choice in capuchins. Cognition 99, B1–B13 (2006).
    Article Google Scholar
  4. Ongur, D. & Price, J.L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).
    Article CAS Google Scholar
  5. Pasquier, F. & Petit, H. Frontotemporal dementia: its rediscovery. Eur. Neurol. 38, 1–6 (1997).
    Article CAS Google Scholar
  6. Hodges, J.R. Frontotemporal dementia (Pick's disease): clinical features and assessment. Neurology 56, S6–S10 (2001).
    Article CAS Google Scholar
  7. Izquierdo, A., Suda, R.K. & Murray, E.A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004).
    Article CAS Google Scholar
  8. Fellows, L.K. & Farah, M.J. The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cereb. Cortex 17, 2669–2674 (2007).
    Article Google Scholar
  9. Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).
    Article CAS Google Scholar
  10. Bechara, A., Tranel, D., Damasio, H. & Damasio, A.R. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex 6, 215–225 (1996).
    Article CAS Google Scholar
  11. Rahman, S., Sahakian, B.J., Hodges, J.R., Rogers, R.D. & Robbins, T.W. Specific cognitive deficits in mild frontal variant of frontotemporal dementia. Brain 122, 1469–1493 (1999).
    Article Google Scholar
  12. Koenigs, M. & Tranel, D. Irrational economic decision-making after ventromedial prefrontal damage: evidence from the Ultimatum Game. J. Neurosci. 27, 951–956 (2007).
    Article CAS Google Scholar
  13. Arana, F.S. et al. Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. J. Neurosci. 23, 9632–9638 (2003).
    Article CAS Google Scholar
  14. Blair, K. et al. Choosing the lesser of two evils, the better of two goods: specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice. J. Neurosci. 26, 11379–11386 (2006).
    Article CAS Google Scholar
  15. O'Doherty, J.P. Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr. Opin. Neurobiol. 14, 769–776 (2004).
    Article CAS Google Scholar
  16. Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value. J. Neurosci. 25, 4806–4812 (2005).
    Article CAS Google Scholar
  17. Pritchard, T.C. et al. Gustatory neural responses in the medial orbitofrontal cortex of the old world monkey. J. Neurosci. 25, 6047–6056 (2005).
    Article CAS Google Scholar
  18. Wallis, J.D. & Miller, E.K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003).
    Article Google Scholar
  19. Roesch, M.R. & Olson, C.R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304, 307–310 (2004).
    Article CAS Google Scholar
  20. Rolls, E.T., Sienkiewicz, Z.J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1, 53–60 (1989).
    Article Google Scholar
  21. Roesch, M.R. & Olson, C.R. Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J. Neurophysiol. 94, 1469–1497 (2005).
    Article Google Scholar
  22. Padoa-Schioppa, C. & Assad, J.A. Neurons in orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).
    Article CAS Google Scholar
  23. Montague, P.R. & Berns, G.S. Neural economics and the biological substrates of valuation. Neuron 36, 265–284 (2002).
    Article CAS Google Scholar
  24. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).
    Article CAS Google Scholar
  25. Kreps, D.M. A Course in Microeconomic Theory, 850 (Princeton University Press, Princeton, New Jersey, 1990).
    Google Scholar
  26. Allingham, M. Choice Theory: A Very Short Introduction, 127 (Oxford University Press, Oxford, 2002).
    Book Google Scholar
  27. Tobler, P.N., Fiorillo, C.D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).
    Article CAS Google Scholar
  28. Cromwell, H.C., Hassani, O.K. & Schultz, W. Relative reward processing in primate striatum. Exp. Brain Res. 162, 520–525 (2005).
    Article Google Scholar
  29. Hosokawa, T., Kato, K., Inoue, M. & Mikami, A. Neurons in the macaque orbitofrontal cortex code relative preference of both rewarding and aversive outcomes. Neurosci. Res. 57, 434–445 (2007).
    Article Google Scholar
  30. Logan, F.A. Decision-making by rats: delay versus amount of reward. J. Comp. Physiol. Psychol. 59, 1–12 (1965).
    Article CAS Google Scholar
  31. Campione, J.C. Transitivity and choice behavior. J. Exp. Child Psychol. 7, 387–399 (1969).
    Article Google Scholar
  32. Mazur, J.E. & Coe, D. Tests of transitivity in choices between fixed and variable reinforcer delays. J. Exp. Anal. Behav. 47, 287–297 (1987).
    Article CAS Google Scholar
  33. Choi, S., Fisman, R., Gale, D. & Kariv, S. Consistency and heterogeneity of individual behavior under uncertainty. Am. Econ. Rev. (in the press).
  34. Tversky, A. The intransitivity of preferences. Psychol. Rev. 76, 31–48 (1969).
    Article Google Scholar
  35. Navarick, D.J. & Fantino, E. Transitivity as a property of choice. J. Exp. Anal. Behav. 18, 389–401 (1972).
    Article CAS Google Scholar
  36. Shafir, S. Intransitivity of preferences in honey bees: support for 'comparative' evaluation of foraging options. Anim. Behav. 48, 55–67 (1994).
    Article Google Scholar
  37. Shafir, S. Context-dependent violations of rational choice in honeybees (Apis mellifera) and gray jays (Perisoreus canadensis). Behav. Ecol. Sociobiol. 51, 180–187 (2002).
    Article Google Scholar
  38. Tversky, A. & Simonson, I. Context-dependent preferences. Manage. Sci. 39, 117–185 (1993).
    Article Google Scholar
  39. Grace, R.C. Violations of transitivity: Implications for a theory of contextual choice. J. Exp. Anal. Behav. 60, 185–201 (1993).
    Article Google Scholar
  40. Price, J.L. Prefrontal cortical networks related to visceral function and mood. Ann. NY Acad. Sci. 877, 383–396 (1999).
    Article CAS Google Scholar
  41. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).
    Article CAS Google Scholar
  42. Padoa-Schioppa, C. Orbitofrontal cortex and the computation of economic value. Ann. NY Acad. Sci. published online 14 August 2007 (doi:10.1196/annals.1401.011).
  43. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).
    Article CAS Google Scholar
  44. Critchley, H.D. Neural mechanisms of autonomic, affective and cognitive integration. J. Comp. Neurol. 493, 154–166 (2005).
    Article Google Scholar
  45. Carmichael, S.T. & Price, J.L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664 (1995).
    Article CAS Google Scholar
  46. Dorris, M.C. & Glimcher, P.W. Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron 44, 365–378 (2004).
    Article CAS Google Scholar
  47. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).
    Article CAS Google Scholar
  48. Luce, R.D. Individual Choice Behavior: A Theoretical Analysis (Wiley, New York, 1959).
    Google Scholar

Download references