Doya, K., Ishii, S., Pouget, A. & Rao, R. Bayesian Brain: Probabilistic Approach to Neural Coding and Learning (MIT Press, Cambridge, Massachusetts, USA, (2007). Google Scholar
Sutton, R.S. & Barto, A.G. Reinforcement Learning (MIT Press, Cambridge, Massachusetts, USA, (1998). Google Scholar
Ho, M.Y., Mobini, S., Chiang, T.J., Bradshaw, C.M. & Szabadi, E. Theory and method in the quantitative analysis of “impulsive choice” behaviour: implications for psychopharmacology. Psychopharmacology (Berl.)146, 362–372 (1999). ArticleCAS Google Scholar
Berns, G.S., Laibson, D. & Loewenstein, G. Intertemporal choice–toward an integrative framework. Trends Cogn. Sci.11, 482–488 (2007). ArticlePubMed Google Scholar
Laibson, D.I. Golden eggs and hyperbolic discounting. Q. J. Econ.62, 443–477 (1997). Article Google Scholar
von Neumann, J. & Morgenstern, O. Theory of Games and Economic Behavior (Princeton Univ. Press, Princeton, New Jersey, USA, (1944). Google Scholar
Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica47, 263–291 (1979). Article Google Scholar
Ishii, S., Yoshida, W. & Yoshimoto, J. Control of exploitation-exploration meta-parameter in reinforcement learning. Neural Netw.15, 665–687 (2002). ArticlePubMed Google Scholar
Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science304, 1782–1787 (2004). ArticleCASPubMed Google Scholar
Herrnstein, R.J. Relative and absolute strength of response as a function of frequency of reinforcement. J. Exp. Anal. Behav.4, 267–272 (1961). ArticleCASPubMedPubMed Central Google Scholar
Puterman, M.L. Markov Decision Processes: Discrete Dynamic Stochastic Programming (Wiley, New York, (1994). Book Google Scholar
Balleine, B.W., Delgado, M.R. & Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci.27, 8161–8165 (2007). ArticleCASPubMedPubMed Central Google Scholar
Balleine, B.W. & Killcross, S. Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci.29, 272–279 (2006). ArticleCASPubMed Google Scholar
Kakade, S. & Dayan, P. Acquisition and extinction in autoshaping. Psychol. Rev.109, 533–544 (2002). ArticlePubMed Google Scholar
Daw, N.D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci.8, 1704–1711 (2005). ArticleCASPubMed Google Scholar
Niv, Y., Daw, N.D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl.)191, 507–520 (2007). ArticleCAS Google Scholar
Schweighofer, N. et al. Humans can adopt optimal discounting strategy under real-time constraints. PLOS Comput. Biol.2, e152 (2006). Article Google Scholar
Doya, K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol.10, 732–739 (2000). ArticleCASPubMed Google Scholar
Matsumoto, K., Suzuki, W. & Tanaka, K. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science301, 229–232 (2003). ArticleCASPubMed Google Scholar
Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal cortex. Nature400, 233–238 (1999). ArticleCASPubMed Google Scholar
Schultz, W., Tremblay, L. & Hollerman, J.R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex10, 272–284 (2000). ArticleCASPubMed Google Scholar
Kawagoe, R., Takikawa, Y. & Hikosaka, O. Expectation of reward modulates cognitive signals in the basal ganglia. Nat. Neurosci.1, 411–416 (1998). ArticleCASPubMed Google Scholar
Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science310, 1337–1340 (2005). ArticleCASPubMed Google Scholar
Komura, Y., Tamura, R., Uwano, T., Nishijo, H. & Ono, T. Auditory thalamus integrates visual inputs into behavioral gains. Nat. Neurosci.8, 1203–1209 (2005). ArticleCASPubMed Google Scholar
Minamimoto, T., Hori, Y. & Kimura, M. Complementary process to response bias in the centromedian nucleus of the thalamus. Science308, 1798–1801 (2005). ArticleCASPubMed Google Scholar
Montague, P.R., Dayan, P. & Sejnowski, T.J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci.16, 1936–1947 (1996). ArticleCASPubMedPubMed Central Google Scholar
Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science275, 1593–1599 (1997). ArticleCASPubMed Google Scholar
McClure, S.M., Berns, G.S. & Montague, P.R. Temporal prediction errors in a passive learning task activate human striatum. Neuron 38, 339–346 (2003).
O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science304, 452–454 (2004). ArticleCASPubMed Google Scholar
O'Doherty, J.P., Dayan, P., Friston, K., Critchley, H. & Dolan, R.J. Temporal difference models and reward-related learning in the human brain. Neuron38, 329–337 (2003). ArticleCASPubMed Google Scholar
Seymour, B. et al. Temporal difference models describe higher-order learning in humans. Nature429, 664–667 (2004). ArticleCASPubMed Google Scholar
Reynolds, J.N. & Wickens, J.R. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw.15, 507–521 (2002). ArticlePubMed Google Scholar
Wickens, J.R., Begg, A.J. & Arbuthnott, G.W. Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience70, 1–5 (1996). ArticleCASPubMed Google Scholar
Yacubian, J. et al. Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. J. Neurosci.26, 9530–9537 (2006). ArticleCASPubMedPubMed Central Google Scholar
Belova, M.A., Paton, J.J., Morrison, S.E. & Salzman, C.D. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron55, 970–984 (2007). ArticleCASPubMedPubMed Central Google Scholar
Seymour, B., Daw, N., Dayan, P., Singer, T. & Dolan, R. Differential encoding of losses and gains in the human striatum. J. Neurosci.27, 4826–4831 (2007). ArticleCASPubMedPubMed Central Google Scholar
Satoh, T., Nakai, S., Sato, T. & Kimura, M. Correlated coding of motivation and outcome of decision by dopamine neurons. J. Neurosci.23, 9913–9923 (2003). ArticleCASPubMedPubMed Central Google Scholar
Daw, N.D., Kakade, S. & Dayan, P. Opponent interactions between serotonin and dopamine. Neural Netw.15, 603–616 (2002). ArticlePubMed Google Scholar
Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature447, 1111–1115 (2007). ArticleCASPubMed Google Scholar
Denk, F. et al. Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology (Berl.)179, 587–596 (2005). ArticleCAS Google Scholar
Kuhnen, C.M. & Knutson, B. The neural basis of financial risk taking. Neuron47, 763–770 (2005). ArticleCASPubMed Google Scholar
Tobler, P.N., O'Doherty, J.P., Dolan, R.J. & Schultz, W. Reward value coding distinct from risk attitude-related uncertainty coding in human reward systems. J. Neurophysiol.97, 1621–1632 (2007). ArticlePubMed Google Scholar
Cardinal, R.N. Neural systems implicated in delayed and probabilistic reinforcement. Neural Netw.19, 1277–1301 (2006). ArticlePubMed Google Scholar
Tanaka, S.C. et al. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat. Neurosci.7, 887–893 (2004). ArticleCASPubMed Google Scholar
Tanaka, S.C. et al. Brain mechanism of reward prediction under predictable and unpredictable environmental dynamics. Neural Netw.19, 1233–1241 (2006). ArticlePubMed Google Scholar
McClure, S.M., Laibson, D.I., Loewenstein, G. & Cohen, J.D. Separate neural systems value immediate and delayed monetary rewards. Science306, 503–507 (2004). ArticleCASPubMed Google Scholar
McClure, S.M., Ericson, K.M., Laibson, D.I., Loewenstein, G. & Cohen, J.D. Time discounting for primary rewards. J. Neurosci.27, 5796–5804 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kable, J.W. & Glimcher, P.W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci.10, 1625–1633 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rudebeck, P.H., Walton, M.E., Smyth, A.N., Bannerman, D.M. & Rushworth, M.F. Separate neural pathways process different decision costs. Nat. Neurosci.9, 1161–1168 (2006). ArticleCASPubMed Google Scholar
Winstanley, C.A., Theobald, D.E., Dalley, J.W., Cardinal, R.N. & Robbins, T.W. Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb. Cortex16, 106–114 (2006). ArticlePubMed Google Scholar
Tanaka, S.C. et al. Serotonin differentially regulates short- and long-term prediction of rewards in the ventral and dorsal striatum. PLoS ONE2, e1333 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Behrens, T.E., Woolrich, M.W., Walton, M.E. & Rushworth, M.F. Learning the value of information in an uncertain world. Nat. Neurosci.10, 1214–1221 (2007). ArticleCASPubMed Google Scholar
Bouret, S. & Sara, S.J. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci.28, 574–582 (2005). ArticleCASPubMed Google Scholar
Dayan, P. & Yu, A.J. Phasic norepinephrine: A neural interrupt signal for unexpected events. Network17, 335–350 (2006). ArticlePubMed Google Scholar
Aston-Jones, G. & Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci.28, 403–450 (2005). ArticleCASPubMed Google Scholar
Clarke, H.F., Dalley, J.W., Crofts, H.S., Robbins, T.W. & Roberts, A.C. Cognitive inflexibility after prefrontal serotonin depletion. Science304, 878–880 (2004). ArticleCASPubMed Google Scholar
Floresco, S.B., Tse, M.T. & Ghods-Sharifi, S. Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology, published online 5 September 2007 (doi:10.1038/sj.npp.1301565). ArticlePubMedCAS Google Scholar
Walton, M.E., Bannerman, D.M. & Rushworth, M.F. The role of rat medial frontal cortex in effort-based decision making. J. Neurosci.22, 10996–11003 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rogers, R.D., Lancaster, M., Wakeley, J. & Bhagwagar, Z. Effects of beta-adrenoceptor blockade on components of human decision-making. Psychopharmacology (Berl.)172, 157–164 (2004). ArticleCAS Google Scholar
Cardinal, R.N. & Howes, N.J. Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neurosci.6, 37 (2005).
Winstanley, C.A., Dalley, J.W., Theobald, D.E. & Robbins, T.W. Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology29, 1331–1343 (2004). ArticleCASPubMed Google Scholar
van Gaalen, M.M., van Koten, R., Schoffelmeer, A.N. & Vanderschuren, L.J. Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol. Psychiatry60, 66–73 (2006). ArticleCASPubMed Google Scholar
Kheramin, S. et al. Effects of orbital prefrontal cortex dopamine depletion on inter-temporal choice: a quantitative analysis. Psychopharmacology (Berl.)175, 206–214 (2004). ArticleCAS Google Scholar
Robinson, E.S. et al. Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology, published online 18 July 2007 (doi:10.1038/sj.npp.1301487). ArticlePubMedCAS Google Scholar
Rudebeck, P.H., Buckley, M.J., Walton, M.E. & Rushworth, M.F. A role for the macaque anterior cingulate gyrus in social valuation. Science313, 1310–1312 (2006). ArticleCASPubMed Google Scholar
Mobini, S. et al. Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl.)160, 290–298 (2002). ArticleCAS Google Scholar
Kheramin, S. et al. Effects of quinolinic acid-induced lesions of the orbital prefrontal cortex on inter-temporal choice: a quantitative analysis. Psychopharmacology (Berl.)165, 9–17 (2002). ArticleCAS Google Scholar
Kheramin, S. et al. The effect of orbital prefrontal cortex lesions on performance on a progressive ratio schedule: implications for models of inter-temporal choice. Behav. Brain Res.156, 145–152 (2005). ArticleCASPubMed Google Scholar
Winstanley, C.A., Theobald, D.E., Cardinal, R.N. & Robbins, T.W. Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J. Neurosci.24, 4718–4722 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cardinal, R.N., Pennicott, D.R., Sugathapala, C.L., Robbins, T.W. & Everitt, B.J. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science292, 2499–2501 (2001). ArticleCASPubMed Google Scholar
Pothuizen, H.H., Jongen-Relo, A.L., Feldon, J. & Yee, B.K. Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. Eur. J. Neurosci.22, 2605–2616 (2005). ArticlePubMed Google Scholar
Hariri, A.R. et al. Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. J. Neurosci.26, 13213–13217 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kennerley, S.W., Walton, M.E., Behrens, T.E., Buckley, M.J. & Rushworth, M.F. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci.9, 940–947 (2006). ArticleCASPubMed Google Scholar
Rogers, R.D. et al. Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology (Berl.)146, 482–491 (1999). ArticleCAS Google Scholar
Rogers, R.D. et al. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology20, 322–339 (1999). ArticleCASPubMed Google Scholar
Chamberlain, S.R. et al. Neurochemical modulation of response inhibition and probabilistic learning in humans. Science311, 861–863 (2006). ArticleCASPubMedPubMed Central Google Scholar
Clarke, H.F., Walker, S.C., Dalley, J.W., Robbins, T.W. & Roberts, A.C. Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb.Cortex17, 18–27 (2007). ArticleCAS Google Scholar
van der Plasse, G. et al. Medial prefrontal serotonin in the rat is involved in goal-directed behaviour when affect guides decision making. Psychopharmacology (Berl.)195, 435–449 (2007). ArticleCAS Google Scholar
Daw, N.D., O'Doherty, J.P., Dayan, P., Seymour, B. & Dolan, R.J. Cortical substrates for exploratory decisions in humans. Nature441, 876–879 (2006). ArticleCASPubMedPubMed Central Google Scholar
Corbit, L.H. & Balleine, B.W. The role of prelimbic cortex in instrumental conditioning. Behav. Brain Res.146, 145–157 (2003). ArticlePubMed Google Scholar
Balleine, B.W. Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiol. Behav.86, 717–730 (2005). ArticleCASPubMed Google Scholar