Neurotrophins use the Erk5 pathway to mediate a retrograde survival response (original) (raw)
References
Altar, C. A. & DiStefano, P. S. Neurotrophin trafficking by anterograde transport. Trends Neurosci.21, 433–437 (1998). ArticleCAS Google Scholar
Kohara, K., Kitamura, A., Morishima, M. & Tsumoto, T. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science291, 2419–2423 (2001). ArticleCAS Google Scholar
Campenot, R. B. NGF and the local control of nerve terminal growth. J. Neurobiol.25, 599–611 (1994). ArticleCAS Google Scholar
Lom, B. & Cohen-Cory, S. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci.19, 9928–9938 (1999). ArticleCAS Google Scholar
Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature410, 37–40 (2001). ArticleCAS Google Scholar
Finkbeiner, S. CREB couples neurotrophin signals to survival messages. Neuron25, 11–14 (2000). ArticleCAS Google Scholar
English, J. et al. New insights into the control of MAP kinase pathways. Exp. Cell Res.253, 255–270 (1999). ArticleCAS Google Scholar
Xing, J., Ginty, D. D. & Greenberg, M. E. Coupling of the Ras-Mapk pathway to gene activation by Rsk2, a growth factor-regulated Creb kinase. Science273, 959–963 (1996). ArticleCAS Google Scholar
Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science286, 1358–1362 (1999). ArticleCAS Google Scholar
Riccio, A., Ahn, S., Davenport, C., Blendy, J. & Ginty, D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science286, 2358–2361 (1999). ArticleCAS Google Scholar
Riccio, A., Pierchala, B. A., Ciarallo, C. L. & Ginty, D. D. An NGF-Trka-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science277, 1097–1100 (1997). ArticleCAS Google Scholar
Watson, F. L. et al. Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex. J. Neurosci.19, 7889–7900 (1999). ArticleCAS Google Scholar
Atwal, J., Massie, B., Miller, F. & Kaplan, D. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron27, 265–277 (2000). ArticleCAS Google Scholar
Klesse, L. & Parada, L. p21 ras and phosphatidylinositol-3 kinase are required for survival of wild-type and NF1 mutant sensory neurons. J. Neurosci.18, 10420–10428 (1998). ArticleCAS Google Scholar
Pearson, G. et al. Mitogen-activated protein (map) kinase pathways: regulation and physiological functions. Endocr. Rev.22, 153–183 (2001). CASPubMed Google Scholar
Cavanaugh, J. E. et al. Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J. Neurosci.21, 434–443 (2001). ArticleCAS Google Scholar
Kamakura, S., Moriguchi, T. & Nishida, E. Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J. Biol. Chem.274, 26563–26571 (1999). ArticleCAS Google Scholar
Chiariello, M., Marinissen, M. J. & Gutkind, J. S. Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol. Cell Biol.20, 1747–1758 (2000). ArticleCAS Google Scholar
Pearson, G., English, J. M., White, M. A. & Cobb, M. H. ERK5 and ERK2 cooperate to regulate NF-κB and cell transformation. J. Biol. Chem.276, 7927–7931 (2000). Article Google Scholar
Kato, Y. et al. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature395, 713–716 (1998). ArticleCAS Google Scholar
Damke, H., Baba, T., van der Bliek, A. M. & Schmid, S. L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol.131, 69–80 (1995). ArticleCAS Google Scholar
van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol.122, 553–563 (1993). Article Google Scholar
Zhang, Y., Moheban, D., Conway, B., Bhattacharyya, A. & Segal, R. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci.20, 5671–5678 (2000). ArticleCAS Google Scholar
Mao, Z., Bonni, A., Xia, F., Nadal-Vincens, M. & Greenberg, M. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science286, 785–790 (1999). ArticleCAS Google Scholar
Kuruvilla, R., Ye, H. & Ginty, D. D. Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron27, 499–512 (2000). ArticleCAS Google Scholar
Beattie, E. C. et al. A signaling endosome hypothesis to explain NGF actions: potential implications for neurodegeneration. Cold Spring Harb. Symp. Quant. Biol.61, 389–406 (1996). ArticleCAS Google Scholar
Arthur, J. S. & Cohen, P. MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett.482, 44–48 (2000). ArticleCAS Google Scholar
Walton, M. et al. CREB phosphorylation promotes nerve cell survival. J. Neurochem.73, 1836–1842 (1999). CASPubMed Google Scholar
Delcroix, J. D. et al. Axonal transport of activating transcription factor-2 is modulated by nerve growth factor in nociceptive neurons. J. Neurosci.19, RC24 (1999).
Bhattacharyya, A. et al. Trk receptors function as rapid retrograde signal carriers in the adult nervous system. J. Neurosci.17, 7007–7016 (1997). ArticleCAS Google Scholar
Senger, D. L. & Campenot, R. B. Rapid retrograde tyrosine phosphorylation of TrkA and other proteins in rat sympathetic neurons in compartmented cultures. J. Cell Biol.138, 411–421 (1997). ArticleCAS Google Scholar
Ehlers, M., Kaplan, D., Price, D. & Koliatsos, V. NGF-stimulated retrograde transport of trk A in the mammalian nervous system. J. Cell Biol.130, 149–156 (1995). ArticleCAS Google Scholar
Fukuhara, S., Marinissen, M. J., Chiariello, M. & Gutkind, J. S. Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Gαq and Gα12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras and Rho-independent pathway. J. Biol. Chem.275, 21730–21736 (2000). ArticleCAS Google Scholar
Janknecht, R., Ernst, W. H., Pingoud, V. & Nordheim, A. Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J.12, 5097–5104 (1993). ArticleCAS Google Scholar
Kato, Y. et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J.16, 7054–7066 (1997). ArticleCAS Google Scholar
Hemesath, T. J., Price, E. R., Takemoto, C., Badalian, T. & Fisher, D. E. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature391, 298–301 (1998). ArticleCAS Google Scholar
Snider, W. & Lichtman, J. Are neurotrophins synaptotrophins? Mol. Cell. Neurosci.7, 433–442 (1996). ArticleCAS Google Scholar
He, T.-C. et al. A simplified system for generating recombinant adenovirus. Proc. Natl. Acad. Sci. USA95, 2509–2514 (1998). ArticleCAS Google Scholar