Neurotrophins use the Erk5 pathway to mediate a retrograde survival response (original) (raw)

References

  1. Altar, C. A. & DiStefano, P. S. Neurotrophin trafficking by anterograde transport. Trends Neurosci. 21, 433–437 (1998).
    Article CAS Google Scholar
  2. Kohara, K., Kitamura, A., Morishima, M. & Tsumoto, T. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291, 2419–2423 (2001).
    Article CAS Google Scholar
  3. Campenot, R. B. NGF and the local control of nerve terminal growth. J. Neurobiol. 25, 599–611 (1994).
    Article CAS Google Scholar
  4. Lom, B. & Cohen-Cory, S. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci. 19, 9928–9938 (1999).
    Article CAS Google Scholar
  5. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).
    Article CAS Google Scholar
  6. Finkbeiner, S. CREB couples neurotrophin signals to survival messages. Neuron 25, 11–14 (2000).
    Article CAS Google Scholar
  7. English, J. et al. New insights into the control of MAP kinase pathways. Exp. Cell Res. 253, 255–270 (1999).
    Article CAS Google Scholar
  8. Xing, J., Ginty, D. D. & Greenberg, M. E. Coupling of the Ras-Mapk pathway to gene activation by Rsk2, a growth factor-regulated Creb kinase. Science 273, 959–963 (1996).
    Article CAS Google Scholar
  9. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).
    Article CAS Google Scholar
  10. Riccio, A., Ahn, S., Davenport, C., Blendy, J. & Ginty, D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 (1999).
    Article CAS Google Scholar
  11. Riccio, A., Pierchala, B. A., Ciarallo, C. L. & Ginty, D. D. An NGF-Trka-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097–1100 (1997).
    Article CAS Google Scholar
  12. Watson, F. L. et al. Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex. J. Neurosci. 19, 7889–7900 (1999).
    Article CAS Google Scholar
  13. Atwal, J., Massie, B., Miller, F. & Kaplan, D. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27, 265–277 (2000).
    Article CAS Google Scholar
  14. Klesse, L. & Parada, L. p21 ras and phosphatidylinositol-3 kinase are required for survival of wild-type and NF1 mutant sensory neurons. J. Neurosci. 18, 10420–10428 (1998).
    Article CAS Google Scholar
  15. Pearson, G. et al. Mitogen-activated protein (map) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183 (2001).
    CAS PubMed Google Scholar
  16. Cavanaugh, J. E. et al. Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons. J. Neurosci. 21, 434–443 (2001).
    Article CAS Google Scholar
  17. Kamakura, S., Moriguchi, T. & Nishida, E. Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J. Biol. Chem. 274, 26563–26571 (1999).
    Article CAS Google Scholar
  18. Chiariello, M., Marinissen, M. J. & Gutkind, J. S. Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol. Cell Biol. 20, 1747–1758 (2000).
    Article CAS Google Scholar
  19. Pearson, G., English, J. M., White, M. A. & Cobb, M. H. ERK5 and ERK2 cooperate to regulate NF-κB and cell transformation. J. Biol. Chem. 276, 7927–7931 (2000).
    Article Google Scholar
  20. Kato, Y. et al. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 395, 713–716 (1998).
    Article CAS Google Scholar
  21. Damke, H., Baba, T., van der Bliek, A. M. & Schmid, S. L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131, 69–80 (1995).
    Article CAS Google Scholar
  22. van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553–563 (1993).
    Article Google Scholar
  23. Zhang, Y., Moheban, D., Conway, B., Bhattacharyya, A. & Segal, R. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci. 20, 5671–5678 (2000).
    Article CAS Google Scholar
  24. Mao, Z., Bonni, A., Xia, F., Nadal-Vincens, M. & Greenberg, M. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790 (1999).
    Article CAS Google Scholar
  25. Kuruvilla, R., Ye, H. & Ginty, D. D. Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27, 499–512 (2000).
    Article CAS Google Scholar
  26. Beattie, E. C. et al. A signaling endosome hypothesis to explain NGF actions: potential implications for neurodegeneration. Cold Spring Harb. Symp. Quant. Biol. 61, 389–406 (1996).
    Article CAS Google Scholar
  27. Arthur, J. S. & Cohen, P. MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett. 482, 44–48 (2000).
    Article CAS Google Scholar
  28. Walton, M. et al. CREB phosphorylation promotes nerve cell survival. J. Neurochem. 73, 1836–1842 (1999).
    CAS PubMed Google Scholar
  29. Delcroix, J. D. et al. Axonal transport of activating transcription factor-2 is modulated by nerve growth factor in nociceptive neurons. J. Neurosci. 19, RC24 (1999).
  30. Bhattacharyya, A. et al. Trk receptors function as rapid retrograde signal carriers in the adult nervous system. J. Neurosci. 17, 7007–7016 (1997).
    Article CAS Google Scholar
  31. Senger, D. L. & Campenot, R. B. Rapid retrograde tyrosine phosphorylation of TrkA and other proteins in rat sympathetic neurons in compartmented cultures. J. Cell Biol. 138, 411–421 (1997).
    Article CAS Google Scholar
  32. Ehlers, M., Kaplan, D., Price, D. & Koliatsos, V. NGF-stimulated retrograde transport of trk A in the mammalian nervous system. J. Cell Biol. 130, 149–156 (1995).
    Article CAS Google Scholar
  33. Fukuhara, S., Marinissen, M. J., Chiariello, M. & Gutkind, J. S. Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Gαq and Gα12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras and Rho-independent pathway. J. Biol. Chem. 275, 21730–21736 (2000).
    Article CAS Google Scholar
  34. Janknecht, R., Ernst, W. H., Pingoud, V. & Nordheim, A. Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J. 12, 5097–5104 (1993).
    Article CAS Google Scholar
  35. Kato, Y. et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16, 7054–7066 (1997).
    Article CAS Google Scholar
  36. Hemesath, T. J., Price, E. R., Takemoto, C., Badalian, T. & Fisher, D. E. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298–301 (1998).
    Article CAS Google Scholar
  37. Snider, W. & Lichtman, J. Are neurotrophins synaptotrophins? Mol. Cell. Neurosci. 7, 433–442 (1996).
    Article CAS Google Scholar
  38. He, T.-C. et al. A simplified system for generating recombinant adenovirus. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).
    Article CAS Google Scholar

Download references