- Ludwin, S. K. Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab. Invest. 39, 597–612 (1978).
CAS PubMed Google Scholar
- Yajima, K. & Suzuki, K. Demyelination and remyelination in the rat central nervous system following ethidium bromide injection. Lab. Invest. 41, 385–392 (1979).
CAS PubMed Google Scholar
- Gensert, J. M. & Goldman, J. E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203 (1997).
Article CAS Google Scholar
- Ludwin, S. K. Proliferation of mature oligodendrocytes after trauma to the central nervous system. Nature 308, 274–275 (1984).
Article CAS Google Scholar
- Yu, W. P., Collarini, E. J., Pringle, N. P. & Richardson, W. D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12, 1353–1362 (1994).
Article CAS Google Scholar
- Barres, B. A. et al. A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367, 371–375 (1994).
Article CAS Google Scholar
- Hajihosseini, M., Tham, T. N. & Dubois-Dalcq, M. Origin of oligodendrocytes within the human spinal cord. J. Neurosci. 16, 7981–7994 (1996).
Article CAS Google Scholar
- Small, R. K., Riddle, P. & Noble, M. Evidence for migration of oligodendrocyte-type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature 328, 155–157 (1987).
Article CAS Google Scholar
- Nait-Oumesmar, B. et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366 (1999).
Article CAS Google Scholar
- Hinks, G. L. & Franklin, R. J. Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol. Cell. Neurosci. 16, 542–556 (2000).
Article CAS Google Scholar
- Mason, J. L. et al. Mature oligodendrocyte apoptosis precedes IGF-1 production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J. Neurosci. Res. 61, 251–262 (2000).
Article CAS Google Scholar
- Declercq, W., Denecker, G., Fiers, W. & Vandenabeele, P. Cooperation of both TNF receptors in inducing apoptosis: involvement of the TNF receptor-associated factor binding domain of the TNF receptor 75. J. Immunol. 161, 390–399 (1998).
CAS PubMed Google Scholar
- Haridas, V., Darnay, B. G., Natarajan, K., Heller, R. & Aggarwal, B. B. Overexpression of the p80 TNF receptor leads to TNF-dependent apoptosis, nuclear factor-κ B activation, and c-Jun kinase activation. J. Immunol. 160, 3152–3162 (1998).
CAS PubMed Google Scholar
- Weiss, T. et al. TNFR80-dependent enhancement of TNFR60-induced cell death is mediated by TNFR-associated factor 2 and is specific for TNFR60. J. Immunol. 161, 3136–3142 (1998).
CAS PubMed Google Scholar
- Ashkenazi, A. & Dixit, V. M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11, 255–260 (1999).
Article CAS Google Scholar
- Chaplin, D. D. & Fu, Y. Cytokine regulation of secondary lymphoid organ development. Curr. Opin. Immunol. 10, 289–297 (1998).
Article CAS Google Scholar
- Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).
Article CAS Google Scholar
- Shohami, E., Ginis, I. & Hallenbeck, J. M. Dual role of tumor necrosis factor α in brain injury. Cytokine Growth Factor Rev. 10, 119–130 (1999).
Article CAS Google Scholar
- Liu, J. et al. TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat. Med. 4, 78–83 (1998).
Article CAS Google Scholar
- Kassiotis, G. & Kollias, G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level. Implications for pathogenesis and therapy of autoimmune demyelination. J. Exp. Med. 193, 427–434 (2001).
Article CAS Google Scholar
- The Lenercept Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53, 457–465 (1999).
- van Oosten, B. W. et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47, 1531–1534 (1996).
Article CAS Google Scholar
- Matsushima, G. K. & Morell, P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 11, 107–116 (2001).
Article CAS Google Scholar
- Hiremath, M. M. et al. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J. Neuroimmunol. 92, 38–49 (1998).
Article CAS Google Scholar
- Morell, P. et al. Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol. Cell. Neurosci. 12, 220–227 (1998).
Article CAS Google Scholar
- Tansey, F. A., Zhang, H. & Cammer, W. Rapid upregulation of the Pi isoform of glutathione-S-transferase in mouse brains after withdrawal of the neurotoxicant, cuprizone. Mol. Chem. Neuropathol. 31, 161–170 (1997).
Article CAS Google Scholar
- Coetzee, T. et al. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86, 209–219 (1996).
Article CAS Google Scholar
- Miller, D. J., Sanborn, K. S., Katzmann, J. A. & Rodriguez, M. Monoclonal autoantibodies promote central nervous system repair in an animal model of multiple sclerosis. J. Neurosci. 14, 6230–6238 (1994).
Article CAS Google Scholar
- Genain, C. P., Cannella, B., Hauser, S. L. & Raine, C. S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat. Med. 5, 170–175 (1999).
Article CAS Google Scholar
- Matsumoto, M. et al. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271, 1289–1291 (1996).
Article CAS Google Scholar
- Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNF α in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).
Article CAS Google Scholar
- Marino, M. W. et al. Characterization of tumor necrosis factor-deficient mice. Proc. Natl. Acad. Sci. USA 94, 8093–8098 (1997).
Article CAS Google Scholar
- Keirstead, H. S. & Blakemore, W. F. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination. Adv. Exp. Med. Biol. 468, 183–197 (1999).
Article CAS Google Scholar
- Tchelingerian, J. L., Monge, M., Le Saux, F., Zalc, B. & Jacque, C. Differential oligodendroglial expression of the tumor necrosis factor receptors in vivo and in vitro. J. Neurochem. 65, 2377–2380 (1995).
Article CAS Google Scholar
- Dopp, J. M., Mackenzie-Graham, A., Otero, G. C. & Merrill, J. E. Differential expression, cytokine modulation, and specific functions of type-1 and type-2 tumor necrosis factor receptors in rat glia. J. Neuroimmunol. 75, 104–112 (1997).
Article CAS Google Scholar
- Raine, C. S., Bonetti, B. & Cannella, B. Multiple sclerosis: expression of molecules of the tumor necrosis factor ligand and receptor families in relationship to the demyelinated plaque. Rev. Neurol. (Paris) 154, 577–585 (1998).
CAS Google Scholar
- Wu, J., Kuo, J., Liu, Y. & Tzeng, S. Tumor necrosis factor-α modulates the proliferation of neural progenitors in the subventricular/ventricular zone of adult rat brain. Neurosci. Lett. 292, 203–206 (2000).
Article CAS Google Scholar
- Ruddle, N. H. et al. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J. Exp. Med. 172, 1193–1200 (1990).
Article CAS Google Scholar
- Korner, H. et al. Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting. J. Exp. Med. 186, 1585–1590 (1997).
Article CAS Google Scholar
- Croxford, J. L. et al. Gene therapy for chronic relapsing experimental allergic encephalomyelitis using cells expressing a novel soluble p75 dimeric TNF receptor. J. Immunol. 164, 2776–2781 (2000).
Article CAS Google Scholar
- Akassoglou, K. et al. Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am. J. Pathol. 153, 801–813 (1998).
Article CAS Google Scholar
- Schiffenbauer, J. et al. The induction of EAE is only partially dependent on TNF receptor signaling but requires the IL-1 type I receptor. Clin. Immunol. 95, 117–123 (2000).
Article CAS Google Scholar
- Mason, J. L., Suzuki, K., Chaplin, D. D. & Matsushima, G. K. Interleukin-1β promotes repair of the CNS. J. Neurosci. 21, 7046–7052 (2001).
Article CAS Google Scholar
- Sidman, R. L., Abervine, J. B. & Pierce, E. T. Atlas of the Mouse Brain and Spinal Cord (Harvard Univ. Press, Cambridge, Massachusetts, 1971).
Google Scholar
- Tansey, F. A. & Cammer, W. A pi form of glutathione-S-transferase is a myelin- and oligodendrocyte-associated enzyme in mouse brain. J. Neurochem. 57, 95–102 (1991).
Article CAS Google Scholar
- Nishiyama, A., Lin, X. H., Giese, N., Heldin, C. H. & Stallcup, W. B. Interaction between NG2 proteoglycan and PDGF α-receptor on O2A progenitor cells is required for optimal response to PDGF. J. Neurosci. Res. 43, 315–330 (1996).
Article CAS Google Scholar