Matthies, H. In search of cellular mechanisms of memory. Prog. Neurobiol.32, 277–349 (1989). ArticleCASPubMed Google Scholar
Dash, P.K., Hochner, B. & Kandel, E.R. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature345, 718–721 (1990). ArticleCASPubMed Google Scholar
Yin, J.C. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell79, 49–58 (1994). ArticleCASPubMed Google Scholar
Yin, J. et al. Induction of a dominant-negative CREB transgene specifically blocks long-term memory in Drosophila melanogaster. Cell79, 49–58 (1994). ArticleCASPubMed Google Scholar
Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell79, 59–68 (1994). ArticleCASPubMed Google Scholar
Kogan, J.H. et al. Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol.7, 1–11 (1997). ArticleCASPubMed Google Scholar
Josselyn, S.A. et al. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci.21, 2404–2412 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lamprecht, R., Hazvi, S. & Dudai, Y. cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J. Neurosci.17, 8443–8450 (1997). ArticleCASPubMedPubMed Central Google Scholar
Guzowski, J.F. & McGaugh, J.L. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. USA94, 2693–2698 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gonzalez, G.A. & Montminy, M.R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell59, 675–680 (1989). ArticleCASPubMed Google Scholar
Brindle, P.K. & Montminy, M.R. The CREB family of transcription activators. Curr. Opin. Genet. Dev.2, 199–204 (1992). ArticleCASPubMed Google Scholar
Danielian, P.S., White, R., Hoare, S.A., Fawell, S.E. & Parker, M.G. Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol. Endocrinol.7, 232–240 (1993). CASPubMed Google Scholar
Mayford, M., Baranes, D., Podsypanina, K. & Kandel, E.R. The 3′-untranslated region of CaMKIIα is a _cis_-acting signal for the localization and translation of mRNA in dendrites. Proc. Natl. Acad. Sci. USA93, 13250–13255 (1996). ArticleCASPubMedPubMed Central Google Scholar
Muratake, T. et al. Structural organization and chromosomal assignment of the human 14-3-3 eta chain gene (YWHAH). Genomics36, 63–69 (1996). ArticleCASPubMed Google Scholar
Skoulakis, E.M. & Davis, R.L. Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron17, 931–944 (1996). ArticleCASPubMed Google Scholar
Sengupta, S., Ralhan, R. & Wasylyk, B. Tumour regression in a ligand inducible manner mediated by a chimeric tumour suppressor derived from p53. Oncogene19, 337–350 (2000). ArticleCASPubMed Google Scholar
Frankland, P.W., Cestari, V., Filipkowski, R., McDonald, R.J. & Silva, A.J. The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behav. Neurosci.112, 863–874 (1998). ArticleCASPubMed Google Scholar
Fanselow, M.S. Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res.110, 73–81 (2000). ArticleCASPubMed Google Scholar
Phillips, R.G. & LeDoux, J.E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci.106, 274–285 (1992). ArticleCASPubMed Google Scholar
Anagnostaras, S.G., Josselyn, S.A., Frankland, P.W. & Silva, A.J. Computer-assisted behavioral assessment of Pavlovian fear conditioning in mice. Learn. Mem.7, 58–72 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nader, K., Schafe, G.E. & Le Doux, J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature406, 722–726 (2000). ArticleCASPubMed Google Scholar
Misanin, J.R., Miller, R.R. & Lewis, D.J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science160, 554–555 (1968). ArticleCASPubMed Google Scholar
Przybyslawski, J. & Sara, S.J. Reconsolidation of memory after its reactivation. Behav. Brain Res.84, 241–246 (1997). ArticleCASPubMed Google Scholar
Judge, M.E. & Quartermain, D. Characteristics of retrograde amnesia following reactivation of memory in mice. Physiol. Behav.28, 585–590 (1982). ArticleCASPubMed Google Scholar
Sara, S.J. Retrieval and reconsolidation: toward a neurobiology of remembering. Learn. Mem.7, 73–84 (2000). ArticleCASPubMed Google Scholar
Frankland, P.W., O'Brien, C., Ohno, M., Kirkwood, A. & Silva, A.J. α-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature411, 309–313 (2001). ArticleCASPubMed Google Scholar
Kogan, J.H., Frankland, P.W. & Silva, A.J. Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus10, 47–56 (2000). ArticleCASPubMed Google Scholar
Taubenfeld, S.M., Milekic, M.H., Monti, B. & Alberini, C.M. The consolidation of new but not reactivated memory requires hippocampal C/EBPβ. Nature Neurosci.4, 813–818 (2001). ArticleCASPubMed Google Scholar
Schneider, A.M. & Sherman, W. Amnesia: a function of the temporal relation of footshock to electroconvulsive shock. Science159, 219–221 (1968). ArticleCASPubMed Google Scholar
Gerson, R. & Hendersen, R.W. Conditions that potentiate the effects of electroconvulsive shock administered 24 hours after avoidance training. Anim. Learn. Behav.6, 346–351 (1978). Article Google Scholar
Mactutus, C.F., Riccio, D.C. & Ferek, J.M. Retrograde amnesia for old (reactivated) memory: some anomalous characteristics. Science204, 1319–1320 (1979). ArticleCASPubMed Google Scholar
Mactutus, C.F., Concannon, J.T. & Riccio, D.C. Nonmonotonic age changes in susceptibility to hypothermia-induced retrograde amnesia in rats. Physiol. Behav.28, 939–943 (1982). ArticleCASPubMed Google Scholar
Summers, M.J., Crowe, S.F. & Ng, K.T. Administration of DL-2-amino-5-phosphonovaleric acid (AP5) induces transient inhibition of reminder-activated memory retrieval in day-old chicks. Brain Res. Cogn. Brain. Res.5, 311–321 (1997). ArticleCASPubMed Google Scholar
Przybyslawski, J., Roullet, P. & Sara, S.J. Attenuation of emotional and nonemotional memories after their reactivation: role of ß-adrenergic receptors. J. Neurosci.19, 6623–6628 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dawson, R.G. & McGaugh, J.L. Electroconvulsive shock effects on a reactivated memory trace: further examination. Science166, 525–527 (1969). ArticleCASPubMed Google Scholar
Lattal, K.M. & Abel, T. Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked fear. J. Neurosci.21, 5773–5780 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gold, P.E. & King, R.A. Amnesia: tests of the effect of delayed footshock-electroconvulsive shock pairings. Physiol. Behav.8, 797–800 (1972). ArticleCASPubMed Google Scholar
Jamieson, J.L. & Albert, D.J. Amnesia from Ecs: the effect of pairing Ecs and footshock. Psychonomic Sci.18, 14–15 (1970). Article Google Scholar
Squire, L.R., Slater, P.C. & Chace, P.M. Reactivation of recent or remote memory before electroconvulsive therapy does not produce retrograde amnesia. Behav. Biol.18, 335–343 (1976). ArticleCASPubMed Google Scholar
Berman, D.E. & Dudai, Y. Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science291, 2417–2419 (2001). ArticleCASPubMed Google Scholar
Gordon, W.C. Susceptibility of a reactivated memory to the effects of strychnine: a time-dependent phenomenon. Physiol. Behav.18, 95–99 (1977). ArticleCASPubMed Google Scholar
Rodriguez, W.A., Horne, C.A. & Padilla, J.L. Effects of glucose and fructose on recently reactivated and recently acquired memories. Prog. Neuropsychopharmacol. Biol. Psychiatry23, 1285–1317 (1999). ArticleCASPubMed Google Scholar
Gordon, W.C. Similarities of recently acquired and reactivated memories in interference. Am. J. Psychol.90, 231–242 (1977). Article Google Scholar
Mactutus, C.F., Ferek, J.M. & Riccio, D.C. Amnesia induced by hyperthermia: an unusually profound, yet reversible, memory loss. Behav. Neural. Biol.30, 260–277 (1980). ArticleCASPubMed Google Scholar
Hall, J., Thomas, K.L. & Everitt, B.J. Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur. J. Neurosci.13, 1453–1458 (2001). ArticleCASPubMed Google Scholar
Pena de Ortiz, S., Maldonado-Vlaar, C.S. & Carrasquillo, Y. Hippocampal expression of the orphan nuclear receptor gene hzf-3/nurr1 during spatial discrimination learning. Neurobiol. Learn. Mem.74, 161–178 (2000). ArticleCASPubMed Google Scholar