The information efficacy of a synapse (original) (raw)

References

  1. Sherrington, C. S. The central nervous system. in A Text-Book of Physiology 7th edn. Vol. 3 (ed. Foster, M.) (Macmillan, London, 1897).
    Google Scholar
  2. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  3. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).
    Article CAS PubMed Google Scholar
  4. Manwani, A. & Koch, C. Detecting and estimating signals over noisy and unreliable synapses: information-theoretic analysis. Neural Comput. 13, 1–33 (2001).
    Article CAS PubMed Google Scholar
  5. Fuhrmann, G., Segev, I., Markram, H. & Tsodyks, M. Coding of temporal information by activity-dependent synapses. J. Neurophysiol. 87, 140–148 (2002).
    Article PubMed Google Scholar
  6. Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).
    Article CAS PubMed Google Scholar
  7. Gil, Z., Connors, B. W. & Amitai, Y. Efficacy of thalamocortical and intracortical synaptic connections: quanta, innervation, and reliability. Neuron 23, 385–397 (1999).
    Article CAS PubMed Google Scholar
  8. Bernander, O., Douglas, R. J., Martin, K. A. C. & Koch, C. Synaptic background activity determines spatio-temporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA 88, 11569–11573 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  9. Borg-Graham, L. J., Monier, C., & Fregnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).
    Article CAS PubMed Google Scholar
  10. Destexhe, A. & Pare, D. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999).
    Article CAS PubMed Google Scholar
  11. London, M. & Segev, I. Synaptic scaling in vitro and in vivo. Nat. Neurosci. 4, 853–855 (2001).
    Article CAS PubMed Google Scholar
  12. Fetz, E. E. & Gustafsson, B. Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones. J. Physiol. (Lond.), 387–410 (1983).
  13. Abeles, M. Corticonics. (Cambridge Univ. Press, Cambridge, 1991).
    Book Google Scholar
  14. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).
    Google Scholar
  15. Hoppfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2254–2258 (1982).
    Google Scholar
  16. Yamada, S., Nakashima, M., Matsumoto, K. & Shiono, S. Information theoretic analysis of action potential trains. I. Analysis of correlation between two neurons. Biol. Cybern. 68, 215–220 (1993).
    Article CAS PubMed Google Scholar
  17. Rieke, F., Warland, D., de Ruyter van Steveninck, R. & Bialek, W. Spikes: Exploring the Neural Code. (MIT Press, Cambridge, Massachusetts, 1997).
    Google Scholar
  18. Borst, A. & Theunissen, F. E. Information theory and neural coding. Nat. Neurosci. 2, 947–957 (1999).
    Article CAS PubMed Google Scholar
  19. Willems, F. M. J., Shtarkov, Y. M. & Tjalkens, T. The context-tree weighting method: basic properties. IEEE Trans. Info. Theory Vol. IT-41, 653–664 (1995).
    Article Google Scholar
  20. Pinsky, P. F. & Rinzel, J. Intrinsic and network rhythmogenesis in a reduced traub model for ca3 neurons J. Comput. Neurosci. 1, 39–60 (1994) [erratum in J. Comput. Neurosci. 2, 275 (1995)].
    Article CAS PubMed Google Scholar
  21. Mainen, Z. F. & Sejnowski, T. J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).
    Article CAS PubMed Google Scholar
  22. Segev, I. & London, M. Untangling dendrites with quantitative models. Science 290, 744–750 (2000).
    Article CAS PubMed Google Scholar
  23. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).
    Article CAS PubMed Google Scholar
  24. Stuart, G. J. & Häusser, M. Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 4, 63–71 (2001).
    Article CAS PubMed Google Scholar
  25. Stratford, R. D., Mason, A. J. R., Larkman, A. U., Major, G. & Jack, J. J. B. The modeling of pyramidal neurons in the visual cortex. in The Computing Neuron (eds. Durbin, R., Miall, C. & Mitchson, C.) Addison-Wesley, Reading, Massachusetts, 1989).
    Google Scholar
  26. Nicoll, A., Larkman, A. & Blakemore, C. Modulation of EPSP shape and efficacy by intrinsic membrane conductances in rat neocortical pyramidal neurons in vitro. J. Physiol. (Lond.) 468, 693–710 (1993).
    Article CAS Google Scholar
  27. Carnevale, N. T. & Johnston, D. Electrophysiological characterization of remote chemical synapses. J. Neurophysiol. 47, 606–621 (1982).
    Article CAS PubMed Google Scholar
  28. Oertel, D. Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J. Neurosci. 3, 2043–2053 (1983).
    Article CAS PubMed PubMed Central Google Scholar
  29. Bernander, O. & Koch, C. The effect of synchronized inputs at the single neuron level. Neural Comput. 6, 622–641 (1994).
    Article Google Scholar
  30. Murthy, V. N. & Fetz, E. E. Effects of input synchrony on the firing rate of a three-conductance cortical neuron model. Neural Comput. 6, 1111–1126 (1994).
    Article Google Scholar
  31. Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168 (1967).
    Article CAS PubMed Google Scholar
  32. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).
    Article CAS PubMed Google Scholar
  33. Cook, E. P. & Johnston, D. Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. J. Neurophysiol. 81, 535–543 (1999).
    Article CAS PubMed Google Scholar
  34. Iansek, R. & Redman, S. J. The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. J. Physiol. (Lond.) 234, 665–688 (1973).
    Article CAS Google Scholar
  35. Levin, J. E. & Miller, J. P. Stochastic resonance enhances neural encoding of broadband stimuli in the cricket cercal sensory system. Nature 380, 165–168 (1996).
    Article CAS PubMed Google Scholar
  36. Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. in Neural Theory and Modeling (ed. Reiss, R.) 73–97 (Stanford Univ. Press, Stanford, 1964).
    Google Scholar
  37. Rinzel, J. & Rall, W. Transient response in a dendritic neuron model for current injected at one branch. Biophys. J. 14, 759–790 (1974).
    Article CAS PubMed PubMed Central Google Scholar
  38. Häusser, M. & Clark, B. A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).
    Article PubMed Google Scholar
  39. Fricker, D. & Miles, R. EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 28, 559–569 (2001).
    Article Google Scholar
  40. De Schutter, E. Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. J. Neurophysiol. 80, 504–519 (1998).
    Article CAS PubMed Google Scholar
  41. Reinagel, P., Godwin, D., Sherman, S. M. & Koch, C. Encoding of visual information by LGN bursts. J. Neurophysiol. 81, 2558–2569 (1999).
    Article CAS PubMed Google Scholar
  42. Magee, J. C. & Cook, E. P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat. Neurosci. 3, 895–903 (2000).
    Article CAS PubMed Google Scholar
  43. Reyes, A. Influence of dendritic conductances on the input-output properties of neurons. Annu. Rev. Neurosci. 24, 653–675 (2001).
    Article CAS PubMed Google Scholar
  44. Magee, J. C. Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999).
    Article CAS PubMed Google Scholar
  45. Hines, M. L. & Carnevale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).
    Article CAS PubMed Google Scholar
  46. Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley, New York, 1991).
    Book Google Scholar
  47. Treves, A. & Panzeri, S. The upward bias in measures of information derived from limited data samples. Neural Comput. 7, 399–407 (1995).
    Article Google Scholar
  48. Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. & Bialek, W. Entropy and information in neuronal spike trains. Phys. Rev. Lett. 80, 197–201 (1997).
    Article Google Scholar
  49. Schultz, S. R. & Panzeri, S. Temporal correlations and neural spike train entropy. Phys. Rev. Lett. 86, 5823–5826 (2001).
    Article CAS PubMed Google Scholar
  50. Contreras, D., Destexhe, A. & Steriade, M. Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J. Neurophysiol. 78, 335–350 (1997).
    Article CAS PubMed Google Scholar

Download references