Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites (original) (raw)

References

  1. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 2001).
    Google Scholar
  2. Conti, F. & Weinberg, R.J. Shaping excitation at glutamatergic synapses. Trends Neurosci. 22, 451–458 (1999).
    Article CAS Google Scholar
  3. Ottersen, O.P. & Landsend, A.S. Organization of glutamate receptors at the synapse. Eur. J. Neurosci. 9, 2219–2224 (1997).
    Article CAS Google Scholar
  4. Somogyi, P., Nusser, Z., Roberts, J.D.B. & Lujan, R. in Precision and Variability in the Placement of Pre- and Postsynaptic Receptors in Relation to Neurotransmitter Release Sites 82–93 (HFSP, Strasbourg, 1998).
    Google Scholar
  5. Yuste, R. & Tank, D.W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16, 701–716 (1996).
    Article CAS Google Scholar
  6. Craig, A.M. & Boudin, H. Molecular heterogeneity of central synapses: afferent and target regulation. Nat. Neurosci. 4, 569–578 (2001).
    Article CAS Google Scholar
  7. Petralia, R.S., Rubio, M.E. & Wenthold, R.J. Selectivity in the distribution of glutamate receptors in neurons. Cell. Biol. Int. 22, 603–608 (1998).
    Article CAS Google Scholar
  8. Magee, J., Hoffman, D., Colbert, C. & Johnston, D. Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu. Rev. Physiol. 60, 327–346 (1998).
    Article CAS Google Scholar
  9. Rubio, M.E. & Wenthold, R.J. Glutamate receptors are selectively targeted to postsynaptic sites in neurons. Neuron 18, 939–950 (1997).
    Article CAS Google Scholar
  10. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).
    Article CAS Google Scholar
  11. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O.P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618–624 (1999).
    Article CAS Google Scholar
  12. Fritschy, J.-M., Weinmann, O., Wenzel, A. & Benke, D. Synapse-specific localization of NMDA and GABAA receptor subunits revealed by antigen-retrieval immunohistochemistry. J. Comp. Neurol. 390, 194–210 (1998).
    Article CAS Google Scholar
  13. Watanabe, M. et al. Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur. J. Neurosci. 10, 478–487 (1998).
    Article CAS Google Scholar
  14. Nusser, Z., Sieghart, W., Benke, D., Fritschy, J.-M. & Somogyi, P. Differential synaptic localization of two major γ-aminobutyric acid type A receptor α subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11939–11944 (1996).
    Article CAS Google Scholar
  15. Nyiri, G., Freund, T.F. & Somogyi, P. Imput-dependent synaptic targeting of α2-subunit-containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat. Eur. J. Neurosci. 13, 428–442 (2001).
    Article CAS Google Scholar
  16. Nusser, Z., Cull-Candy, S.G. & Farrant, M. Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron 19, 697–709 (1997).
    Article CAS Google Scholar
  17. Nusser, Z., Hajos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172–177 (1998).
    Article CAS Google Scholar
  18. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).
    Article CAS Google Scholar
  19. Hu, H. et al. Presynaptic Ca2+ -activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J. Neurosci. 21, 9585–9597 (2001).
    Article CAS Google Scholar
  20. Hoffman, D.A., Magee, J.C., Colbert, C.M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).
    Article CAS Google Scholar
  21. Bischofberger, J. & Schild, D. Different spatial patterns of [Ca2+] increase caused by N- and L-type Ca2+ channel activation in frog olfactory bulb neurones. J. Physiol. (Lond.) 487, 305–317 (1995).
    Article CAS Google Scholar
  22. Christie, B.R., Eliot, L.S., Ito, K., Miyakawa, H. & Johnston, D. Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. J. Neurophysiol. 73, 2553–2557 (1995).
    Article CAS Google Scholar
  23. Stuart, G. & Hausser, M. Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13, 703–712 (1994).
    Article CAS Google Scholar
  24. Magee, J.C. & Johnston, D. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. (Lond.) 487, 67–90 (1995).
    Article CAS Google Scholar
  25. Magee, J.C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).
    Article CAS Google Scholar
  26. Magee, J.C. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999).
    Article CAS Google Scholar
  27. Williams, S.R. & Stuart, G.J. Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).
    Article CAS Google Scholar
  28. Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).
    Article CAS Google Scholar
  29. Schwindt, P.C. & Crill, W.E. Modification of current transmitted from apical dendrite to soma by blockade of voltage- and Ca2+ -dependent conductances in rat neocortical pyramidal neurons. J. Neurophysiol. 78, 187–198 (1997).
    Article CAS Google Scholar
  30. Berger, T., Larkum, M.E. & Luscher, H.R. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85, 855–868 (2001).
    Article CAS Google Scholar
  31. Tsubokawa, H., Miura, M. & Kano, M. Elevation of intracellular Na+ induced by hyperpolarization at the dendrites of pyramidal neurones of mouse hippocampus. J. Physiol. (Lond.) 517, 135–142 (1999).
    Article CAS Google Scholar
  32. Stuart, G.J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).
    Article CAS Google Scholar
  33. Colbert, C.M. & Johnston, D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686 (1996).
    Article CAS Google Scholar
  34. Hoffman, D.A. & Johnston, D. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J. Neurosci. 18, 3521–3528 (1998).
    Article CAS Google Scholar
  35. Gauss, R., Seifert, R. & Kaupp, U.B. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393, 583–587 (1998).
    Article CAS Google Scholar
  36. Santoro, B., Grant, S.G., Bartsch, D. & Kandel, E.R. Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proc. Natl. Acad. Sci. USA 94, 14815–14820 (1997).
    Article CAS Google Scholar
  37. Monteggia, L.M., Eisch, A.J., Tang, M.D., Kaczmarek, L.K. & Nestler, E.J. Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Res. Mol. Brain Res. 81, 129–139 (2000).
    Article CAS Google Scholar
  38. Ludwig, A., Zong, X., Jeglitsch, M., Hofmann, F. & Biel, M. A family of hyperpolarization-activated mammalian cation channels. Nature 393, 587–591 (1998).
    Article CAS Google Scholar
  39. Chen, S., Wang, J. & Siegelbaum, S.A. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J. Gen. Physiol. 117, 491–504 (2001).
    Article CAS Google Scholar
  40. Seifert, R. et al. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc. Natl. Acad. Sci. USA 96, 9391–9396 (1999).
    Article CAS Google Scholar
  41. Baude, A., Nusser, Z., Molnar, E., McIlhinney, R.A. & Somogyi, P. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 69, 1031–1055 (1995).
    Article CAS Google Scholar
  42. Nusser, Z. et al. Immunocytochemical localization of the α1 and β2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dentate gyrus. Eur. J. Neurosci. 7, 630–646 (1995).
    Article CAS Google Scholar
  43. Moosmang, S., Biel, M., Hofmann, F. & Ludwig, A. Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol. Chem. 380, 975–980 (1999).
    Article CAS Google Scholar
  44. Bender, R.A. et al. Differential and age-dependent expression of hyperpolarization-activated, cyclic nucleotide-gated cation channel isoforms 1-4 suggests evolving roles in the developing rat hippocampus. Neuroscience 106, 689–698 (2001).
    Article CAS Google Scholar
  45. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).
    Article CAS Google Scholar
  46. Somogyi, P., Tamas, G., Lujan, R. & Buhl, E.H. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Rev. 26, 113–135 (1998).
    Article CAS Google Scholar
  47. Shigemoto, R. et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 7503–7522 (1997).
    Article CAS Google Scholar
  48. Sloviter, R.S., Ali-Akbarian, L., Horvath, K.D. & Menkens, K.A. Substance P receptor expression by inhibitory interneurons of the rat hippocampus: enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. J. Comp. Neurol. 430, 283–305 (2001).
    Article CAS Google Scholar

Download references