A p75NTR and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein (original) (raw)

References

  1. Caroni, P. & Schwab, M.E. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1, 85–96 (1988).
    Article CAS Google Scholar
  2. Schwab, M.E. Repairing the injured spinal cord. Science 295, 1029–1031 (2002).
    Article CAS Google Scholar
  3. Fournier, A.E. & Strittmatter, S.M. Repulsive factors and axon regeneration in the CNS. Curr. Opin. Neurobiol. 11, 89–94 (2001).
    Article CAS Google Scholar
  4. McKerracher, L. et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811 (1994).
    Article CAS Google Scholar
  5. Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R. & Filbin, M.T. A novel role for myelin-associated glycoprotein as an inhibitor of axon regeneration. Neuron 13, 757–767 (1994).
    Article CAS Google Scholar
  6. Chen, M.S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).
    Article CAS Google Scholar
  7. GrandPre, T., Nakamura, F., Vartanian, T. & Strittmatter, S.M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444 (2000).
    Article CAS Google Scholar
  8. Pham-Dinh, D. et al. Characterization and expression of the cDNA coding for the human myelin/oligodendrocyte glycoprotein. J. Neurochem. 63, 2353–2356 (1994).
    Article CAS Google Scholar
  9. Wang, K.C. et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944 (2002).
    Article CAS Google Scholar
  10. Domeniconi, M. et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283–290 (2002).
    Article CAS Google Scholar
  11. Liu, B., Fournier, A., GrandPre, T. & Strittmatter, S.M. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297, 1190–1193 (2002).
    Article CAS Google Scholar
  12. Fournier, A.E., GrandPre, T. & Strittmatter, S.M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346 (2001).
    Article CAS Google Scholar
  13. Yamashita, T., Higuchi, H. & Tohyama, M. The p75 receptor tranduces the signal from myelin-associated glycoprotein to Rho. J. Cell Biol. 157, 565–570 (2002).
    Article CAS Google Scholar
  14. Song, H.j. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).
    Article CAS Google Scholar
  15. Marano, N. et al. Purification and amino terminal sequencing of human melanoma nerve growth factor receptor. J. Neurochem. 48, 225–232 (1987).
    Article CAS Google Scholar
  16. Song, H.-J. & Poo, M.-M. Sinal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9, 355–363 (1999).
    Article CAS Google Scholar
  17. Ming, G., Henley, J., Tessier-Lavigne, M., Song, H. & Poo, M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29, 441–452 (2001).
    Article CAS Google Scholar
  18. Bandtlow, C.E., Schmidt, M.F., Hassinger, T.D., Schwab, M.E. & Kater, S.B. Role of intracellular calcium in NI-35-evoked collapse of neuronal growth cones. Science 259, 80–83 (1993).
    Article CAS Google Scholar
  19. Jiang, H. et al. Both p140(trk) and p75(NGFR) nerve growth factor receptors mediate nerve growth factor-stimulated calcium uptake. J. Biol. Chem. 272, 6835–6837 (1997).
    Article CAS Google Scholar
  20. DeBellard, M.E., Tang, S., Mukhopadhyay, G., Shen, Y.J. & Filbin, M.T. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol. Cell. Neurosci. 7, 89–101 (1996).
    Article CAS Google Scholar
  21. Ming, G. et al. Phospholipase C-γ and Phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23, 139–148 (1999).
    Article CAS Google Scholar
  22. Lohof, A.M., Quillan, M., Dan, Y. & Poo, M.-M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J. Neurosci. 12, 1253–1261 (1992).
    Article CAS Google Scholar
  23. Chao, M.V. et al. Gene transfer and molecular cloning of the human NGF receptor. Science 232, 518–521 (1986).
    Article CAS Google Scholar
  24. Lee, R., Kermani, P., Teng, K.K. & Hempstead, B.L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001).
    Article CAS Google Scholar
  25. Hempstead, B.L. The many faces of p75NTR. Curr. Opin. Neurobiol. 12, 260–267 (2002).
    Article CAS Google Scholar
  26. Huang, E.J. & Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).
    Article CAS Google Scholar
  27. Lee, K.F., Bachman, K., Landis, S. & Jaenisch, R. Dependence on p75 for innervation of some sympathetic targets. Science 263, 1447–1449 (1994).
    Article CAS Google Scholar
  28. McQuillen, P.S., DeFreitas, M.F., Zada, G. & Shatz, C.J. A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation. J. Neurosci. 22, 3580–3593 (2002).
    Article CAS Google Scholar
  29. Walsh, G.S., Krol, K.M. & Kawaja, M.D. Absence of the p75 neurotrophin receptor alters the pattern of sympathosensory sprouting in the trigeminal ganglia of mice overexpressing nerve growth factor. J. Neurosci. 19, 258–273 (1999).
    Article CAS Google Scholar
  30. Yan, Q. & Johnson, E.M. Jr. An immunohistochemical study of the nerve growth factor receptor in developing rats. J. Neurosci. 8, 3481–3498 (1988).
    Article CAS Google Scholar
  31. Wang, X. et al. Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon- myelin and synaptic contact. J. Neurosci. 22, 5505–5515 (2002).
    Article CAS Google Scholar
  32. Turnley, A.M. & Bartlett, P.F. MAG and MOG enhance neurite outgrowth of embryonic mouse spinal cord neurons. Neuroreport 9, 1987–1990 (1998).
    Article CAS Google Scholar
  33. Cai, D., Shen, Y., De Bellard, M., Tang, S. & Filbin, M.T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101 (1999).
    Article CAS Google Scholar
  34. Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903 (2002).
    Article CAS Google Scholar
  35. Neumann, S., Bradke, F., Tessier-Lavigne, M. & Basbaum, A.I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885–893 (2002).
    Article CAS Google Scholar
  36. Song, H-j., Ming, G-l. & Poo, M.-M. Cyclic-AMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997).
    Article CAS Google Scholar
  37. Wang, Q. & Zheng, J.Q. cAMP-mediated regulation of neurotrophin-induced collapse of nerve growth cones. J. Neurosci. 18, 4973–4984 (1998).
    Article CAS Google Scholar
  38. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).
    Article CAS Google Scholar
  39. Dickson, B.J. Rho GTPases in growth cone guidance. Curr. Opin. Neurobiol. 11, 103–110 (2001).
    Article CAS Google Scholar
  40. Lehmann, M. et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547 (1999).
    Article CAS Google Scholar
  41. Wahl, S., Barth, H., Ciossek, T., Aktories, K. & Mueller, B.K. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J. Cell Biol. 149, 263–270 (2000).
    Article CAS Google Scholar
  42. Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodeling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17, 1201–1211 (1997).
    Article CAS Google Scholar
  43. Yamashita, T., Tucker, K.I. & Barde, Y.A. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24, 585–593 (1999).
    Article CAS Google Scholar
  44. Casaccia-Bonnefil, P., Kong, H. & Chao, M.V. Neurotrophins: the biological paradox of survival factors eliciting apoptosis. Cell Death Differ. 5, 357–364 (1998).
    Article CAS Google Scholar
  45. Tabti, N., Alder, J. & Poo, M.-m. in Culturing Nerve Cells (eds. Banker, G. & Goslin, K.) 237–260 (MIT Press, Cambridge, Massachusetts, 1998).
    Google Scholar
  46. Spitzer, N.C. & Lamborghini, J.E. The development of the action potential mechanism of amphibian neurons isolated in culture. Proc. Natl. Acad. Sci. USA 73, 1641–1645 (1976).
    Article CAS Google Scholar
  47. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M. & Poo, M. Calcium signaling in the guidance of nerve growth by netrin-1. Nature 403, 93–98 (2000).
    Article CAS Google Scholar
  48. Ming, G. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417, 411–418 (2002).
    Article CAS Google Scholar
  49. Hutson, L.D. & Bothwell, M. Expression and function of Xenopus laevis p75(NTR) suggest evolution of developmental regulatory mechanisms. J. Neurobiol. 49, 79–98 (2001).
    Article CAS Google Scholar
  50. Zheng, J.Q., Felder, M., Connor, J.A., & Poo, M.-M. Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144 (1994).
    Article CAS Google Scholar

Download references