Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice (original) (raw)

References

  1. Caulfield, M.P. & Birdsall, N.J. Classification of muscarinic acetylcholine receptors. Pharmacol. Rev. 50, 279–290 (1998).
    CAS PubMed Google Scholar
  2. Fornari, R.V., Moreira, K.M. & Oliveira, M.G. Effects of the selective M1 muscarinic receptor antagonist dicyclomine on emotional memory. Learn. Mem. 7, 287–292 (2000).
    Article CAS Google Scholar
  3. Wallis, R.M. & Napier, C.M. Muscarinic antagonists in development for disorders of smooth muscle function. Life Sci. 64, 395–401 (1999).
    Article CAS Google Scholar
  4. Levey, A.I., Kitt, C.A., Simonds, W.F., Price, D.L. & Brann, M.R. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 11, 3218–3226 (1991).
    Article CAS Google Scholar
  5. Wei, J., Walton, E.A., Milici, A. & Buccafusco, J.J. m1-m5 muscarinic receptor distribution in rat CNS by RT-PCR and HPLC. J. Neurochem. 63, 815–821 (1994).
    Article CAS Google Scholar
  6. Marino, M.J., Rouse, S.T., Levey, A.I., Potter, L.T. & Conn, P.J. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 95, 11465–11470 (1998).
    Article CAS Google Scholar
  7. Hamilton, S.E. & Nathanson, N.M. The M1 receptor is required for muscarinic activation of mitogen-activated protein (MAP) kinase in murine cerebral cortical neurons. J. Biol. Chem. 276, 15850–15853 (2001).
    Article CAS Google Scholar
  8. Hamilton, S.E. et al. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc. Natl. Acad. Sci. USA 94, 13311–13316 (1997).
    Article CAS Google Scholar
  9. Anagnostaras, S.G., Maren, S., Sage, J.R., Goodrich, S. & Fanselow, M.S. Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. Neuropsychopharmacology 21, 731–744 (1999).
    Article CAS Google Scholar
  10. Anagnostaras, S.G., Maren, S. & Fanselow, M.S. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J. Neurosci. 19, 1106–1114 (1999).
    Article CAS Google Scholar
  11. Levy, A., Kluge, P.B. & Elsmore, T.F. Radial arm maze performance of mice: acquisition and atropine effects. Behav. Neural Biol. 39, 229–240 (1983).
    Article CAS Google Scholar
  12. Olton, D., Becker, J. & Handelmann, G. Hippocampus, space and memory. Behav. Brain Sci. 2, 313–365 (1979).
    Article Google Scholar
  13. Hagen, J.J., Tweedie, F. & Morris, R.G.M. Lack of task specificy and absence of post-training effects of atropine on learning. Behav. Neurosci. 100, 483–493 (1986).
    Article Google Scholar
  14. Morris, R.G.M., Garrud, P., Rawlins, J.N.P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).
    Article CAS Google Scholar
  15. Winslow, J.T. & Camacho, F. Cholinergic modulation of a decrement in social investigation following repeated contacts between mice. Psychopharmacology (Berl.) 121, 164–172 (1995).
    Article CAS Google Scholar
  16. Kogan, J.H., Frankland, P.W. & Silva, A.J. Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10, 47–56 (2000).
    Article CAS Google Scholar
  17. Huerta, P.T. & Lisman, J.E. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15, 1053–1063 (1995).
    Article CAS Google Scholar
  18. Kim, J.J. & Fanselow, M.S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).
    Article CAS Google Scholar
  19. Phillips, R.G. & LeDoux, J.E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).
    Article CAS Google Scholar
  20. Rudy, J.W. Scopolamine administered before and after training impairs both contextual and auditory-cue fear conditioning. Neurobiol. Learn. Mem. 65, 73–81 (1996).
    Article CAS Google Scholar
  21. Gale, G.D., Anagnostaras, S.G. & Fanselow, M.S. Cholinergic modulation of Pavlovian fear conditioning: effects of intra-hippocampal scopolamine infusion. Hippocampus 11, 371–376 (2001).
    Article CAS Google Scholar
  22. Wallenstein, G.V. & Vago, D.R. Intrahippocampal scopolamine impairs both acquisition and consolidation of contextual fear conditioning. Neurobiol. Learn. Mem. 75, 245–252 (2001).
    Article CAS Google Scholar
  23. Anagnostaras, S.G., Josselyn, S.A., Frankland, P.W. & Silva, A.J. Computer-assisted behavioral assessment of Pavlovian fear conditioning in mice. Learn. Mem. 7, 58–72 (2000).
    Article CAS Google Scholar
  24. Maren, S., Anagnostaras, S.G. & Fanselow, M.S. The startled seahorse: is the hippocampus necessary for contextual fear conditioning? Trends Cogn. Sci. 2, 39–42 (1998).
    Article CAS Google Scholar
  25. Frankland, P.W., O'Brien, C., Ohno, M., Kirkwood, A. & Silva, A.J. Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 411, 309–313 (2001).
    Article CAS Google Scholar
  26. Anagnostaras, S.G., Gale, G.D. & Fanselow, M.S. Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11, 8–17 (2001).
    Article CAS Google Scholar
  27. Phillips, R.G. & LeDoux, J.E. Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn. Mem. 1, 34–44 (1994).
    CAS PubMed Google Scholar
  28. Frankland, P.W., Cestari, V., Filipkowski, R.K., McDonald, R.J. & Silva, A.J. The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behav. Neurosci. 112, 863–874 (1998).
    Article CAS Google Scholar
  29. Maren, S., Aharonov, G. & Fanselow, M.S. Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav. Brain Res. 88, 261–274 (1997).
    Article CAS Google Scholar
  30. Bontempi, B., Laurent-Demir, C., Destrade, C. & Jaffard, R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400, 671–675 (1999).
    Article CAS Google Scholar
  31. Cain, D.P. Testing the NMDA, long-term potentiation, and cholinergic hypotheses of spatial learning. Neurosci. Biobehav. Rev. 22, 181–193 (1998).
    Article CAS Google Scholar
  32. Gerber, D.J. et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc. Natl. Acad. Sci. USA 98, 15312–15317 (2001).
    Article CAS Google Scholar
  33. Miyakawa, T., Yamada, M., Duttaroy, A. & Wess, J. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J. Neurosci. 21, 5239–5250 (2001).
    Article CAS Google Scholar
  34. Squire, L.R. Memory and the hippocampus: a synthesis from findings with rat, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).
    Article CAS Google Scholar
  35. Silva, A.J., Paylor, R., Wehner, J.M. & Tonegawa, S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).
    Article CAS Google Scholar
  36. Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).
    Article CAS Google Scholar
  37. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).
    Article CAS Google Scholar
  38. Hamilton, S.E. et al. Alteration of cardiovascular and neuronal function in M1 knockout mice. Life Sci. 68, 2489–2493 (2001).
    Article CAS Google Scholar
  39. Eichenbaum, H., Otto, T. & Cohen, N. Two functional components of the hippocampal memory system. Behav. Brain Sci. 17, 449–518 (1994).
    Article Google Scholar
  40. Olton, D.S. Discrimination reversal performance after hippocampal lesions: an enduring failure of reinforcement and non-reinforcement to direct behavior. Physiol. Behav. 9, 353–356 (1972).
    Article CAS Google Scholar
  41. Konorski, J. Integrative Activity of the Brain (Univ. of Chicago Press, Chicago, Illinois, 1967).
  42. Fransen, E., Alonso, A.A. & Hasselmo, M.E. Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation current INCM in entorhinal neuronal activity during delayed matching tasks. J. Neurosci. 22, 1081–1097 (2002).
    Article CAS Google Scholar
  43. Dias, R. & Aggleton, J.P. Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching and matching-to-place in the T-maze in the rat: differential involvement of the prelimbic-infralimbic and anterior cingulate cortices in providing behavioural flexibility. Eur. J. Neurosci. 12, 4457–4466 (2000).
    Article CAS Google Scholar
  44. D'Esposito, M. & Postle, B.R. The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 37, 1303–1315 (1999).
    Article CAS Google Scholar
  45. Hasselmo, M. Neuromodulation: acetylcholine and memory modulation. Trends Cogn. Sci. 3, 351–359 (1999).
    Article CAS Google Scholar
  46. Buzsaki, G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31, 551–570 (1989).
    Article CAS Google Scholar
  47. Alreja, M. et al. Muscarinic tone sustains impulse flow in the septohippocampal GABA but not cholinergic pathway: implications for learning and memory. J. Neurosci. 20, 8103–8110 (2000).
    Article CAS Google Scholar
  48. Shiozaki, K., Iseki, E., Hino, H. & Kosaka, K. Distribution of m1 muscarinic acetylcholine receptors in the hippocampus of patients with Alzheimer's disease and dementia with Lewy bodies-an immunohistochemical study. J. Neurol. Sci. 193, 23–28 (2001).
    Article CAS Google Scholar
  49. Levey, A.I., Edmunds, S.M., Koliatsos, V., Wiley, R.G. & Heilman, C.J. Expression of m1–m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J. Neurosci. 15, 4077–4092 (1995).
    Article CAS Google Scholar
  50. Bussiere, T. et al. Stereologic assessment of the total cortical volume occupied by amyloid deposits and its relationship with cognitive status in aging and Alzheimer's disease. Neuroscience 112, 75–91 (2002).
    Article CAS Google Scholar

Download references