Applications of dip-pen nanolithography (original) (raw)
References
Gates, B. D. et al. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev.105, 1171–1196 (2005). CAS Google Scholar
Tseng, A. A., Notargiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: A review. J. Vac. Sci. Tech. B23, 877–894 (2005). CAS Google Scholar
Kramer, S., Fuierer, R. R. & Gorman, C. B. Scanning probe lithography using self-assembled monolayers. Chem. Rev.103, 4367–4418 (2003). Google Scholar
Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature344, 524–526 (1990). CAS Google Scholar
Liu, S., Maoz, R. & Sagiv, J. Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality. Nano Lett.4, 845–851 (2004). CAS Google Scholar
Maoz, R., Cohen, S. R. & Sagiv, J. Nanoelectrochemical patterning of monolayer surfaces. Toward spatially defined self-assembly of nanostructures. Adv. Mater.11, 55–61 (1999). CAS Google Scholar
Piner, R. D., Zhu, J., Xu, F., Hong, S. H. & Mirkin, C. A. “Dip-pen” nanolithography. Science283, 661–663 (1999). CAS Google Scholar
Ginger, D. S., Zhang, H. & Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Edn43, 30–45 (2004). Google Scholar
Mirkin, C. A., Piner, R. & Hong, S. Methods using scanning probe microscope tips and products therefor or produced thereby. US patent 2002063212; International patent 2000041213.
Nelson, B. A., King, W. P., Laracuente, A. R., Sheehan, P. E. & Whitman, L. J. Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography. Appl. Phys. Lett.88, 033104 (2006). Google Scholar
Hong, S. H., Zhu, J. & Mirkin, C. A. Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science286, 523–525 (1999). CAS Google Scholar
Hong, S. H., Zhu, J. & Mirkin, C. A. A new tool for studying the in situ growth processes for self-assembled monolayers under ambient conditions. Langmuir15, 7897–7900 (1999). CAS Google Scholar
Jaschke, M. & Butt, H. -J. Deposition of organic material by the tip of a scanning force microscope. Langmuir11, 1061–4 (1995). CAS Google Scholar
Zhang, Y., Salaita, K., Lim, J. H., Lee, K. B. & Mirkin, C. A. A massively parallel electrochemical approach to the miniaturization of organic micro- and nanostructures on surfaces. Langmuir20, 962–968 (2004). CAS Google Scholar
Zhang, Y., Salaita, K., Lim, J. H. & Mirkin, C. A. Electrochemical whittling of organic nanostructures. Nano Lett.2, 1389–1392 (2002). CAS Google Scholar
Vesper, B. J. et al. Surface-bound porphyrazines: Controlling reduction potentials of self-assembled monolayers through molecular proximity/orientation to a metal surface. J. Am. Chem. Soc.126, 16653–16658 (2004). CAS Google Scholar
Bruinink, C. M. et al. Supramolecular microcontact printing and dip-pen nanolithography on molecular printboards. Chem. Eur. J.11, 3988–3996 (2005). CAS Google Scholar
Auletta, T. et al. Writing patterns of molecules on molecular printboards. Angew. Chem. Int. Edn43, 369–373 (2004). CAS Google Scholar
Zhou, H. L., Li, Z., Wu, A. G., Wei, G. & Liu, Z. G. Direct patterning of Rhodamine 6G molecules on mica by dip-pen nanolithography. Appl. Surf. Sci.236, 18–24 (2004). CAS Google Scholar
Kooi, S. E., Baker, L. A., Sheehan, P. E. & Whitman, L. J. Dip-pen nanolithography of chemical templates on silicon oxide. Adv. Mater.16, 1013–1016 (2004). CAS Google Scholar
Ivanisevic, A., McCumber, K. V. & Mirkin, C. A. Site-directed exchange studies with combinatorial libraries of nanostructures. J. Am. Chem. Soc.124, 11997–12001 (2002). CAS Google Scholar
Nyamjav, D. & Ivanisevic, A. Properties of polyelectrolyte templates generated by dip-pen nanolithography and microcontact printing. Chem. Mater.16, 5216–5219 (2004). CAS Google Scholar
Su, M., Aslam, M., Fu, L., Wu, N. Q. & Dravid, V. P. Dip-pen nanopatterning of photosensitive conducting polymer using a monomer ink. Appl. Phys. Lett.84, 4200–4202 (2004). CAS Google Scholar
Liu, X. G. et al. The controlled evolution of a polymer single crystal. Science307, 1763–1766 (2005). CAS Google Scholar
Lim, J. H. & Mirkin, C. A. Electrostatically driven dip-pen nanolithography of conducting polymers. Adv. Mater.14, 1474–1477 (2002). CAS Google Scholar
Noy, A. et al. Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography. Nano Lett.2, 109–112 (2002). CAS Google Scholar
Qin, L. D., Park, S., Huang, L. & Mirkin, C. A. On-wire lithography. Science309, 113–115 (2005). CAS Google Scholar
Demers, L. M., Ginger, D. S., Park, S. J., Li, Z., Chung, S. W. & Mirkin, C. A. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science296, 1836–1838 (2002). CAS Google Scholar
Chung, S. W. et al. Top-down meets bottom-up: Dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits. Small1, 64–69 (2005). CAS Google Scholar
Lee, K. B., Lim, J. H. & Mirkin, C. A. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc.125, 5588–5589 (2003). CAS Google Scholar
Lim, J. H. et al. Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angew. Chem. Int. Edn42, 2309–2312 (2003). CAS Google Scholar
Lee, K. B., Park, S. J., Mirkin, C. A., Smith, J. C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science295, 1702–1705 (2002). CAS Google Scholar
Lee, M. et al. Protein nanoarray on Prolinker™ surface constructed by atomic force microscopy dip-pen nanolithography for analysis of protein interaction. Proteomics6, 1094–1103 (2006). CAS Google Scholar
Cho, Y. & Ivanisevic, A. TAT peptide immobilization on gold surfaces: A comparison study with a thiolated peptide and alkylthiols using AFM, XPS, and FT-IRRAS. J. Phys. Chem. B109, 6225–6232 (2005). CAS Google Scholar
Cho, Y. & Ivanisevic, A. SiOx surfaces with lithographic features composed of a TAT peptide. J. Phys. Chem. B108, 15223–15228 (2004). CAS Google Scholar
Jiang, H. Z. & Stupp, S. I. Dip-pen patterning and surface assembly of peptide amphiphiles. Langmuir21, 5242–5246 (2005). CAS Google Scholar
Gundiah, G. et al. Dip-pen nanolithography with magnetic Fe2O3 nanocrystals. Appl. Phys. Lett.84, 5341–5343 (2004). CAS Google Scholar
Ding, L., Li, Y., Chu, H. B., Li, X. M. & Liu, J. Creation of cadmium sulfide nanostructures using AFM dip-pen nanolithography. J. Phys. Chem. B109, 22337–22340 (2005). CAS Google Scholar
Li, J. Y., Lu, C. G., Maynor, B., Huang, S. M. & Liu, J. Controlled growth of long gan nanowires from catalyst patterns fabricated by “dip-pen” nanolithographic techniques. Chem. Mater.16, 1633–1636 (2004). CAS Google Scholar
Fu, L., Liu, X. G., Zhang, Y., Dravid, V. P. & Mirkin, C. A. Nanopatterning of “hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett.3, 757–760 (2003). CAS Google Scholar
Su, M., Liu, X. G., Li, S. Y., Dravid, V. P. & Mirkin, C. A. Moving beyond molecules: Patterning solid-state features via dip-pen nanolithography with sol-based inks. J. Am. Chem. Soc.124, 1560–1561 (2002). CAS Google Scholar
Agarwal, G., Naik, R. R. & Stone, M. O. Immobilization of histidine-tagged proteins on nickel by electrochemical dip pen nanolithography. J. Am. Chem. Soc.125, 7408–7412 (2003). CAS Google Scholar
Jang, J., Schatz, G. C. & Ratner, M. A. Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett.90, 156104 (2003). Google Scholar
Lee, N. K. & Hong, S. H. Modeling collective behavior of molecules in nanoscale direct deposition processes. J. Chem. Phys.124, 114711–114715 (2006). Google Scholar
Ahn, Y., Hong, S. & Jang, J. Growth dynamics of self-assembled monolayers in dip-pen nanolithography. J. Phys. Chem. B110, 4270–4273 (2006). CAS Google Scholar
Manandhar, P., Jang, J., Schatz, G. C., Ratner, M. A. & Hong, S. Anomalous surface diffusion in nanoscale direct deposition processes. Phys. Rev. Lett.90, 115505 (2003). CAS Google Scholar
Jang, J. Y., Schatz, G. C. & Ratner, M. A. How narrow can a meniscus be? Phys. Rev. Lett.92, 085504 (2004). Google Scholar
Jang, J. K., Schatz, G. C. & Ratner, M. A. Capillary force in atomic force microscopy. J. Chem. Phys.120, 1157–1160 (2004). CAS Google Scholar
Jang, J. Y., Schatz, G. C. & Ratner, M. A. Liquid meniscus condensation in dip-pen nanolithography. J. Chem. Phys.116, 3875–3886 (2002). CAS Google Scholar
Cho, N., Ryu, S., Kim, B., Schatz, G. C. & Hong, S. H. Phase of molecular ink in nanoscale direct deposition processes. J. Chem. Phys.124, 024714 (2006). Google Scholar
Sheehan, P. E. & Whitman, L. J. Thiol diffusion and the role of humidity in “dip pen nanolithography”. Phys. Rev. Lett.88, 156104–156107 (2002). CAS Google Scholar
Weeks, B. L., Noy, A., Miller, A. E. & De Yoreo, J. J. Effect of dissolution kinetics on feature size in dip-pen nanolithography. Phys. Rev. Lett.88, 255505 (2002). CAS Google Scholar
Peterson, E. J., Weeks, B. L., De Yoreo, J. J. & Schwartz, P. V. Effect of environmental conditions on dip pen nanolithography of mercaptohexadecanoic acid. J. Phys. Chem. B108, 15206–15210 (2004). CAS Google Scholar
Schwartz, P. V. Molecular transport from an atomic force microscope tip: A comparative study of dip-pen nanolithography. Langmuir18, 4041–4046 (2002). CAS Google Scholar
Salaita, K., Amarnath, A., Maspoch, D., Higgins, T. B. & Mirkin, C. A. Spontaneous “phase separation” of patterned binary alkanethiol mixtures. J. Am. Chem. Soc.127, 11283–11287 (2005). CAS Google Scholar
Hampton, J. R., Dameron, A. A. & Weiss, P. S. Double-ink dip-pen nanolithography studies elucidate molecular transport. J. Am. Chem. Soc.128, 1648–1653 (2006). CAS Google Scholar
Hampton, J. R., Dameron, A. A. & Weiss, P. S. Transport rates vary with deposition time in dip-pen nanolithography. J. Phys. Chem. B109, 23118–23120 (2005). CAS Google Scholar
Rozhok, S., Piner, R. & Mirkin, C. A. Dip-pen nanolithography: What controls ink transport? J. Phys. Chem. B107, 751–757 (2003). CAS Google Scholar
Rozhok, S., Sun, P., Piner, R., Lieberman, M. & Mirkin, C. A. AFM study of water meniscus formation between an AFM tip and NaCl substrate. J. Phys. Chem. B108, 7814–7819 (2004). CAS Google Scholar
Moldovan, N., Kim, K. H. & Espinosa, H. D. Design and fabrication of a novel microfluidic nanoprobe. J. Microelectromech. Syst.15, 204–213 (2006). Google Scholar
Bullen, D. & Liu, C. Electrostatically actuated dip pen nanolithography probe arrays. Sens. Actuators A125, 504–511 (2006). CAS Google Scholar
Wang, X. F. & Liu, C. Multifunctional probe array for nano patterning and imaging. Nano Lett.5, 1867–1872 (2005). CAS Google Scholar
Lee, K. B., Kim, E. Y., Mirkin, C. A. & Wolinsky, S. M. The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma. Nano Lett.4, 1869–1872 (2004). CAS Google Scholar
Cheung, C. L. et al. Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J. Am. Chem. Soc.125, 6848–6849 (2003). CAS Google Scholar
Smith, J. C. et al. Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett.3, 883–886 (2003). CAS Google Scholar
Vega, R. A., Maspoch, D., Salaita, K. & Mirkin, C. A. Nanoarrays of single virus particles. Angew. Chem. Int. Edn44, 6013–6015 (2005). CAS Google Scholar
Rozhok, S. et al. Methods for fabricating microarrays of motile bacteria. Small1, 445–451 (2005). CAS Google Scholar
Hyun, J., Kim, J., Craig, S. L. & Chilkoti, A. Enzymatic nanolithography of a self-assembled oligonucleotide monolayer on gold. J. Am. Chem. Soc.126, 4770–4771 (2004). CAS Google Scholar
Xu, P. & Kaplan, D. L. Nanoscale surface patterning of enzyme-catalyzed polymeric conducting wires. Adv. Mater.16, 628–633 (2004). CAS Google Scholar
Xu, P., Uyama, H., Whitten, J. E., Kobayashi, S. & Kaplan, D. L. Peroxidase-catalyzed in situ polymerization of surface orientated caffeic acid. J. Am. Chem. Soc.127, 11745–11753 (2005). CAS Google Scholar
Basnar, B., Weizmann, Y., Cheglakov, Z. & Willner, I. Synthesis of nanowires using dip-pen nanolithography and biocatalytic inks. Adv. Mater.18, 713–718 (2006). CAS Google Scholar
Coffey, D. C. & Ginger, D. S. Patterning phase separation in polymer films with dip-pen nanolithography. J. Am. Chem. Soc.127, 4564–4565 (2005). CAS Google Scholar
Yu, M., Nyamjav, D. & Ivanisevic, A. Fabrication of positively and negatively charged polyelectrolyte structures by dip-pen nanolithography. J. Mater. Chem.15, 649–652 (2005). CAS Google Scholar
Lee, S. W., Sanedrin, R. G., Oh, B. K. & Mirkin, C. A. Nanostructured polyelectrolyte multilayer organic thin films generated via parallel dip-pen nanolithography. Adv. Mater.17, 2749–2753 (2005). CAS Google Scholar
Rao, S. G., Huang, L., Setyawan, W. & Hong, S. H. Large-scale assembly of carbon nanotubes. Nature425, 36–37 (2003). CAS Google Scholar
Wang, Y. et al. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl Acad. Sci. USA103, 2026–2031 (2006). CAS Google Scholar
Myung, S., Lee, M., Kim, G. T., Ha, J. S. & Hong, S. Large-scale “surface-programmed assembly” of pristine vanadium oxide nanowire-based devices. Adv. Mater.17, 2361–2364 (2005). CAS Google Scholar
Liu, X. G., Fu, L., Hong, S. H., Dravid, V. P. & Mirkin, C. A. Arrays of magnetic nanoparticles patterned via “dip-pen” nanolithography. Adv. Mater.14, 231–234 (2002). Google Scholar
Demers, L. M., Park, S. -J., Taton, T. A., Li, Z. & Mirkin, C. A. Orthogonal assembly of nanoparticles building blocks on dip-pen nanolithographically generated templates of DNA. Angew. Chem. Int. Edn40, 3071–3073 (2001). CAS Google Scholar
Demers, L. M. & Mirkin, C. A. Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays. Angew. Chem. Int. Edn40, 3069–3071 (2001). CAS Google Scholar
Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol.23, 1294–1301 (2005). CAS Google Scholar
Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA100, 4984–4989 (2003). CAS Google Scholar
Stranick, S. J., Parikh, A. N., Tao, Y. T., Allara, D. L. & Weiss, P. S. Phase-separation of mixed-composition self-assembled monolayers into nanometer-scale molecular domains. J. Phys. Chem.98, 7636–7646 (1994). CAS Google Scholar
Imabayashi, S., Hobara, D., Kakiuchi, T. & Knoll, W. Selective replacement of adsorbed alkanethiols in phase-separated binary self-assembled monolayers by electrochemical partial desorption. Langmuir13, 4502–4504 (1997). CAS Google Scholar
Salaita, K. S., Lee, S. W., Ginger, D. S. & Mirkin, C. A. DPN-generated nanostructures as positive resists for preparing lithographic masters or hole arrays. Nano Lett.6, 2493–2498 (2006). CAS Google Scholar
Onclin, S., Ravoo, B. J. & Reinhoudt, D. N. Engineering silicon oxide surfaces using self-assembled monolayers. Angew. Chem. Int. Edn44, 6282–6304 (2005). CAS Google Scholar
Mulder, A. et al. Molecular printboards on silicon oxide: Lithographic patterning of cyclodextrin monolayers with multivalent, fluorescent guest molecules. Small1, 242–253 (2005). CAS Google Scholar
Degenhart, G. H., Dordi, B., Schonherr, H. & Vancso, G. J. Micro- and nanofabrication of robust reactive arrays based on the covalent coupling of dendrimers to activated monolayers. Langmuir20, 6216–6224 (2004). CAS Google Scholar
Kim, K. H. et al. Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. Small1, 866–874 (2005). CAS Google Scholar
Wang, X. F. et al. Scanning probe contact printing. Langmuir19, 8951–8955 (2003). CAS Google Scholar
Kim, K. H., Moldovan, N. & Espinosa, H. D. A nanofountain probe with sub-100 nm molecular writing resolution. Small1, 632–635 (2005). CAS Google Scholar
Zhang, H., Elghanian, R., Amro, N. A., Disawal, S. & Eby, R. Dip pen nanolithography stamp tip. Nano Lett.4, 1649–1655 (2004). CAS Google Scholar
Wang, X. F., Bullen, D. A., Zou, J., Liu, C. & Mirkin, C. A. Thermally actuated probe array for parallel dip-pen nanolithography. J. Vac. Sci. Tech. B22, 2563–2567 (2004). CAS Google Scholar
Bullen, D. et al. Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett.84, 789–791 (2004). CAS Google Scholar
Li, Y., Maynor, B. W. & Liu, J. Electrochemical AFM “dip-pen” nanolithography. J. Am. Chem. Soc.123, 2105–2106 (2001). CAS Google Scholar
Cai, Y. G. & Ocko, B. M. Electro pen nanolithography. J. Am. Chem. Soc.127, 16287–16291 (2005). CAS Google Scholar
Unal, K., Frommer, J. & Wickramasinghe, H. K. Ultrafast molecule sorting and delivery by atomic force microscopy. Appl. Phys. Lett.88, 183105/1–183105/3 (2006). CAS Google Scholar
Sheehan, P. E., Whitman, L. J., King, W. P. & Nelson, B. A. Nanoscale deposition of solid inks via thermal dip pen nanolithography. Appl. Phys. Lett.85, 1589–1591 (2004). CAS Google Scholar
Huang, L., Chang, Y. -H., Kakkassery, J. J. & Mirkin, C. A. Dip-pen nanolithography of high-melting-temperature molecules. J. Phys. Chem. B110, 20756–20758 (2006). CAS Google Scholar
Zou, J. et al. A mould-and-transfer technology for fabricating scanning probe microscopy probes. J. Micromech. Microeng.14, 204–211 (2004). CAS Google Scholar
Lewis, A. et al. Fountain pen nanochemistry: Atomic force control of chrome etching. Appl. Phys. Lett.75, 2689–2691 (1999). CAS Google Scholar
Ying, L. M. et al. The scanned nanopipette: A new tool for high resolution bioimaging and controlled deposition of biomolecules. Phys. Chem. Chem. Phys.7, 2859–2866 (2005). CAS Google Scholar
Bruckbauer, A. et al. Writing with DNA and protein using a nanopipet for controlled delivery. J. Am. Chem. Soc.124, 8810–8811 (2002). CAS Google Scholar
Bruckbauer, A. et al. Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc.125, 9834–9839 (2003). CAS Google Scholar
Sniadecki, N., Desai, R. A., Ruiz, S. A. & Chen, C. S. Nanotechnology for cell-substrate interactions. Ann. Biomed. Eng.34, 59–74 (2006). Google Scholar
Haynes, C. L. & Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B105, 5599–5611 (2001). CAS Google Scholar
Lutwyche, M. et al. 5×5 2D AFM cantilever arrays a first step towards a terabit storage device. Sens. Actuators A73, 89–94 (1999). CAS Google Scholar
Minne, S. C. et al. Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett.73, 1742–1744 (1998). CAS Google Scholar
Minne, S. C., Manalis, S. R., Atalar, A. & Quate, C. F. Independent parallel lithography using the atomic force microscope. J. Vac. Sci. Tech. B14, 2456–2461 (1996). CAS Google Scholar
Minne, S. C., Manalis, S. R. & Quate, C. F. Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl. Phys. Lett.67, 3918–3920 (1995). CAS Google Scholar
Despont, M., Drechsler, U., Yu, R., Pogge, H. B. & Vettiger, P. Wafer-scale microdevice transfer/interconnect: Its application in an AFM-based data-storage system. J. Microelectromech. Syst.13, 895–901 (2004). CAS Google Scholar
Eleftheriou, E. et al. Millipede - a MEMS-based scanning-probe data-storage system. IEEE Trans. Magnetics39, 938–945 (2003). Google Scholar
Vettiger, P. et al. The “Millipede” - nanotechnology entering data storage. IEEE Trans. Nanotechnol.1, 39–55 (2002). Google Scholar
King, W. P. et al. Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation. J. Microelectromech. Syst.11, 765–774 (2002). CAS Google Scholar
Vettiger, P. et al. The “Millipede” - more than one thousand tips for future afm data storage. IBM J. Res. Develop.44, 323–340 (2000). CAS Google Scholar
Zhang, M. et al. A mems nanoplotter with high-density parallel dip-pen manolithography probe arrays. Nanotechnology13, 212–217 (2002). CAS Google Scholar
Salaita, K. et al. Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small1, 940–945 (2005). CAS Google Scholar
Wang, X. F., Vincent, L., Bullen, D., Zou, J. & Liu, C. Scanning probe lithography tips with spring-on-tip designs: Analysis, fabrication, and testing. Appl. Phys. Lett.87, 054102 (2005). Google Scholar
Salaita, K. et al. Massively parallel dip-pen nanolithography with 55,000-pen two-dimensional arrays. Angew. Chem. Int. Edn45 (2006).
Lenhert, S., Sun, P., Wang, Y., Mirkin, C. A. & Fuchs, H. Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small3, 71–75 (2007). CAS Google Scholar
Liu, G. Y., Xu, S. & Qian, Y. L. Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc. Chem. Res.33, 457–466 (2000). Google Scholar
Calvert, P. Inkjet printing for materials and devices. Chem. Mater.13, 3299–3305 (2001). CAS Google Scholar
Rosner, B. et al. Active probes and microfluidic ink delivery for dip pen nanolithography. Proc. SPIE: BioMEMS Nanotechnol.5275, 213–222 (2004). CAS Google Scholar
Rosner, B. et al. Functional extensions of dip pen nanolithography: Active probes and microfluidic ink delivery. Smart Mater. Struct.15, S124–S130 (2006). Google Scholar