Applications of dip-pen nanolithography (original) (raw)

References

  1. Gates, B. D. et al. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).
    CAS Google Scholar
  2. Tseng, A. A., Notargiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: A review. J. Vac. Sci. Tech. B 23, 877–894 (2005).
    CAS Google Scholar
  3. Kramer, S., Fuierer, R. R. & Gorman, C. B. Scanning probe lithography using self-assembled monolayers. Chem. Rev. 103, 4367–4418 (2003).
    Google Scholar
  4. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).
    CAS Google Scholar
  5. Liu, S., Maoz, R. & Sagiv, J. Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality. Nano Lett. 4, 845–851 (2004).
    CAS Google Scholar
  6. Maoz, R., Cohen, S. R. & Sagiv, J. Nanoelectrochemical patterning of monolayer surfaces. Toward spatially defined self-assembly of nanostructures. Adv. Mater. 11, 55–61 (1999).
    CAS Google Scholar
  7. Piner, R. D., Zhu, J., Xu, F., Hong, S. H. & Mirkin, C. A. “Dip-pen” nanolithography. Science 283, 661–663 (1999).
    CAS Google Scholar
  8. Ginger, D. S., Zhang, H. & Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Edn 43, 30–45 (2004).
    Google Scholar
  9. Mirkin, C. A., Piner, R. & Hong, S. Methods using scanning probe microscope tips and products therefor or produced thereby. US patent 2002063212; International patent 2000041213.
  10. Nelson, B. A., King, W. P., Laracuente, A. R., Sheehan, P. E. & Whitman, L. J. Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography. Appl. Phys. Lett. 88, 033104 (2006).
    Google Scholar
  11. Hong, S. H., Zhu, J. & Mirkin, C. A. Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286, 523–525 (1999).
    CAS Google Scholar
  12. Hong, S. H., Zhu, J. & Mirkin, C. A. A new tool for studying the in situ growth processes for self-assembled monolayers under ambient conditions. Langmuir 15, 7897–7900 (1999).
    CAS Google Scholar
  13. Jaschke, M. & Butt, H. -J. Deposition of organic material by the tip of a scanning force microscope. Langmuir 11, 1061–4 (1995).
    CAS Google Scholar
  14. Zhang, Y., Salaita, K., Lim, J. H., Lee, K. B. & Mirkin, C. A. A massively parallel electrochemical approach to the miniaturization of organic micro- and nanostructures on surfaces. Langmuir 20, 962–968 (2004).
    CAS Google Scholar
  15. Zhang, Y., Salaita, K., Lim, J. H. & Mirkin, C. A. Electrochemical whittling of organic nanostructures. Nano Lett. 2, 1389–1392 (2002).
    CAS Google Scholar
  16. Vesper, B. J. et al. Surface-bound porphyrazines: Controlling reduction potentials of self-assembled monolayers through molecular proximity/orientation to a metal surface. J. Am. Chem. Soc. 126, 16653–16658 (2004).
    CAS Google Scholar
  17. Bruinink, C. M. et al. Supramolecular microcontact printing and dip-pen nanolithography on molecular printboards. Chem. Eur. J. 11, 3988–3996 (2005).
    CAS Google Scholar
  18. Auletta, T. et al. Writing patterns of molecules on molecular printboards. Angew. Chem. Int. Edn 43, 369–373 (2004).
    CAS Google Scholar
  19. Zhou, H. L., Li, Z., Wu, A. G., Wei, G. & Liu, Z. G. Direct patterning of Rhodamine 6G molecules on mica by dip-pen nanolithography. Appl. Surf. Sci. 236, 18–24 (2004).
    CAS Google Scholar
  20. Kooi, S. E., Baker, L. A., Sheehan, P. E. & Whitman, L. J. Dip-pen nanolithography of chemical templates on silicon oxide. Adv. Mater. 16, 1013–1016 (2004).
    CAS Google Scholar
  21. Ivanisevic, A., McCumber, K. V. & Mirkin, C. A. Site-directed exchange studies with combinatorial libraries of nanostructures. J. Am. Chem. Soc. 124, 11997–12001 (2002).
    CAS Google Scholar
  22. Nyamjav, D. & Ivanisevic, A. Properties of polyelectrolyte templates generated by dip-pen nanolithography and microcontact printing. Chem. Mater. 16, 5216–5219 (2004).
    CAS Google Scholar
  23. Su, M., Aslam, M., Fu, L., Wu, N. Q. & Dravid, V. P. Dip-pen nanopatterning of photosensitive conducting polymer using a monomer ink. Appl. Phys. Lett. 84, 4200–4202 (2004).
    CAS Google Scholar
  24. Liu, X. G. et al. The controlled evolution of a polymer single crystal. Science 307, 1763–1766 (2005).
    CAS Google Scholar
  25. Lim, J. H. & Mirkin, C. A. Electrostatically driven dip-pen nanolithography of conducting polymers. Adv. Mater. 14, 1474–1477 (2002).
    CAS Google Scholar
  26. Noy, A. et al. Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography. Nano Lett. 2, 109–112 (2002).
    CAS Google Scholar
  27. Qin, L. D., Park, S., Huang, L. & Mirkin, C. A. On-wire lithography. Science 309, 113–115 (2005).
    CAS Google Scholar
  28. Demers, L. M., Ginger, D. S., Park, S. J., Li, Z., Chung, S. W. & Mirkin, C. A. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836–1838 (2002).
    CAS Google Scholar
  29. Chung, S. W. et al. Top-down meets bottom-up: Dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits. Small 1, 64–69 (2005).
    CAS Google Scholar
  30. Lee, K. B., Lim, J. H. & Mirkin, C. A. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 125, 5588–5589 (2003).
    CAS Google Scholar
  31. Lim, J. H. et al. Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angew. Chem. Int. Edn 42, 2309–2312 (2003).
    CAS Google Scholar
  32. Lee, K. B., Park, S. J., Mirkin, C. A., Smith, J. C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).
    CAS Google Scholar
  33. Lee, M. et al. Protein nanoarray on Prolinker™ surface constructed by atomic force microscopy dip-pen nanolithography for analysis of protein interaction. Proteomics 6, 1094–1103 (2006).
    CAS Google Scholar
  34. Cho, Y. & Ivanisevic, A. TAT peptide immobilization on gold surfaces: A comparison study with a thiolated peptide and alkylthiols using AFM, XPS, and FT-IRRAS. J. Phys. Chem. B 109, 6225–6232 (2005).
    CAS Google Scholar
  35. Cho, Y. & Ivanisevic, A. SiOx surfaces with lithographic features composed of a TAT peptide. J. Phys. Chem. B 108, 15223–15228 (2004).
    CAS Google Scholar
  36. Jiang, H. Z. & Stupp, S. I. Dip-pen patterning and surface assembly of peptide amphiphiles. Langmuir 21, 5242–5246 (2005).
    CAS Google Scholar
  37. Gundiah, G. et al. Dip-pen nanolithography with magnetic Fe2O3 nanocrystals. Appl. Phys. Lett. 84, 5341–5343 (2004).
    CAS Google Scholar
  38. Ding, L., Li, Y., Chu, H. B., Li, X. M. & Liu, J. Creation of cadmium sulfide nanostructures using AFM dip-pen nanolithography. J. Phys. Chem. B 109, 22337–22340 (2005).
    CAS Google Scholar
  39. Li, J. Y., Lu, C. G., Maynor, B., Huang, S. M. & Liu, J. Controlled growth of long gan nanowires from catalyst patterns fabricated by “dip-pen” nanolithographic techniques. Chem. Mater. 16, 1633–1636 (2004).
    CAS Google Scholar
  40. Fu, L., Liu, X. G., Zhang, Y., Dravid, V. P. & Mirkin, C. A. Nanopatterning of “hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3, 757–760 (2003).
    CAS Google Scholar
  41. Su, M., Liu, X. G., Li, S. Y., Dravid, V. P. & Mirkin, C. A. Moving beyond molecules: Patterning solid-state features via dip-pen nanolithography with sol-based inks. J. Am. Chem. Soc. 124, 1560–1561 (2002).
    CAS Google Scholar
  42. Agarwal, G., Naik, R. R. & Stone, M. O. Immobilization of histidine-tagged proteins on nickel by electrochemical dip pen nanolithography. J. Am. Chem. Soc. 125, 7408–7412 (2003).
    CAS Google Scholar
  43. Jang, J., Schatz, G. C. & Ratner, M. A. Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett. 90, 156104 (2003).
    Google Scholar
  44. Lee, N. K. & Hong, S. H. Modeling collective behavior of molecules in nanoscale direct deposition processes. J. Chem. Phys. 124, 114711–114715 (2006).
    Google Scholar
  45. Ahn, Y., Hong, S. & Jang, J. Growth dynamics of self-assembled monolayers in dip-pen nanolithography. J. Phys. Chem. B 110, 4270–4273 (2006).
    CAS Google Scholar
  46. Manandhar, P., Jang, J., Schatz, G. C., Ratner, M. A. & Hong, S. Anomalous surface diffusion in nanoscale direct deposition processes. Phys. Rev. Lett. 90, 115505 (2003).
    CAS Google Scholar
  47. Jang, J. Y., Schatz, G. C. & Ratner, M. A. How narrow can a meniscus be? Phys. Rev. Lett. 92, 085504 (2004).
    Google Scholar
  48. Jang, J. K., Schatz, G. C. & Ratner, M. A. Capillary force in atomic force microscopy. J. Chem. Phys. 120, 1157–1160 (2004).
    CAS Google Scholar
  49. Jang, J. Y., Schatz, G. C. & Ratner, M. A. Liquid meniscus condensation in dip-pen nanolithography. J. Chem. Phys. 116, 3875–3886 (2002).
    CAS Google Scholar
  50. Cho, N., Ryu, S., Kim, B., Schatz, G. C. & Hong, S. H. Phase of molecular ink in nanoscale direct deposition processes. J. Chem. Phys. 124, 024714 (2006).
    Google Scholar
  51. Sheehan, P. E. & Whitman, L. J. Thiol diffusion and the role of humidity in “dip pen nanolithography”. Phys. Rev. Lett. 88, 156104–156107 (2002).
    CAS Google Scholar
  52. Weeks, B. L., Noy, A., Miller, A. E. & De Yoreo, J. J. Effect of dissolution kinetics on feature size in dip-pen nanolithography. Phys. Rev. Lett. 88, 255505 (2002).
    CAS Google Scholar
  53. Peterson, E. J., Weeks, B. L., De Yoreo, J. J. & Schwartz, P. V. Effect of environmental conditions on dip pen nanolithography of mercaptohexadecanoic acid. J. Phys. Chem. B 108, 15206–15210 (2004).
    CAS Google Scholar
  54. Schwartz, P. V. Molecular transport from an atomic force microscope tip: A comparative study of dip-pen nanolithography. Langmuir 18, 4041–4046 (2002).
    CAS Google Scholar
  55. Salaita, K., Amarnath, A., Maspoch, D., Higgins, T. B. & Mirkin, C. A. Spontaneous “phase separation” of patterned binary alkanethiol mixtures. J. Am. Chem. Soc. 127, 11283–11287 (2005).
    CAS Google Scholar
  56. Hampton, J. R., Dameron, A. A. & Weiss, P. S. Double-ink dip-pen nanolithography studies elucidate molecular transport. J. Am. Chem. Soc. 128, 1648–1653 (2006).
    CAS Google Scholar
  57. Hampton, J. R., Dameron, A. A. & Weiss, P. S. Transport rates vary with deposition time in dip-pen nanolithography. J. Phys. Chem. B 109, 23118–23120 (2005).
    CAS Google Scholar
  58. Rozhok, S., Piner, R. & Mirkin, C. A. Dip-pen nanolithography: What controls ink transport? J. Phys. Chem. B 107, 751–757 (2003).
    CAS Google Scholar
  59. Rozhok, S., Sun, P., Piner, R., Lieberman, M. & Mirkin, C. A. AFM study of water meniscus formation between an AFM tip and NaCl substrate. J. Phys. Chem. B 108, 7814–7819 (2004).
    CAS Google Scholar
  60. Moldovan, N., Kim, K. H. & Espinosa, H. D. Design and fabrication of a novel microfluidic nanoprobe. J. Microelectromech. Syst. 15, 204–213 (2006).
    Google Scholar
  61. Bullen, D. & Liu, C. Electrostatically actuated dip pen nanolithography probe arrays. Sens. Actuators A 125, 504–511 (2006).
    CAS Google Scholar
  62. Wang, X. F. & Liu, C. Multifunctional probe array for nano patterning and imaging. Nano Lett. 5, 1867–1872 (2005).
    CAS Google Scholar
  63. Lee, K. B., Kim, E. Y., Mirkin, C. A. & Wolinsky, S. M. The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma. Nano Lett. 4, 1869–1872 (2004).
    CAS Google Scholar
  64. Cheung, C. L. et al. Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J. Am. Chem. Soc. 125, 6848–6849 (2003).
    CAS Google Scholar
  65. Smith, J. C. et al. Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett. 3, 883–886 (2003).
    CAS Google Scholar
  66. Vega, R. A., Maspoch, D., Salaita, K. & Mirkin, C. A. Nanoarrays of single virus particles. Angew. Chem. Int. Edn 44, 6013–6015 (2005).
    CAS Google Scholar
  67. Rozhok, S. et al. Methods for fabricating microarrays of motile bacteria. Small 1, 445–451 (2005).
    CAS Google Scholar
  68. Hyun, J., Kim, J., Craig, S. L. & Chilkoti, A. Enzymatic nanolithography of a self-assembled oligonucleotide monolayer on gold. J. Am. Chem. Soc. 126, 4770–4771 (2004).
    CAS Google Scholar
  69. Xu, P. & Kaplan, D. L. Nanoscale surface patterning of enzyme-catalyzed polymeric conducting wires. Adv. Mater. 16, 628–633 (2004).
    CAS Google Scholar
  70. Xu, P., Uyama, H., Whitten, J. E., Kobayashi, S. & Kaplan, D. L. Peroxidase-catalyzed in situ polymerization of surface orientated caffeic acid. J. Am. Chem. Soc. 127, 11745–11753 (2005).
    CAS Google Scholar
  71. Basnar, B., Weizmann, Y., Cheglakov, Z. & Willner, I. Synthesis of nanowires using dip-pen nanolithography and biocatalytic inks. Adv. Mater. 18, 713–718 (2006).
    CAS Google Scholar
  72. Coffey, D. C. & Ginger, D. S. Patterning phase separation in polymer films with dip-pen nanolithography. J. Am. Chem. Soc. 127, 4564–4565 (2005).
    CAS Google Scholar
  73. Yu, M., Nyamjav, D. & Ivanisevic, A. Fabrication of positively and negatively charged polyelectrolyte structures by dip-pen nanolithography. J. Mater. Chem. 15, 649–652 (2005).
    CAS Google Scholar
  74. Lee, S. W., Sanedrin, R. G., Oh, B. K. & Mirkin, C. A. Nanostructured polyelectrolyte multilayer organic thin films generated via parallel dip-pen nanolithography. Adv. Mater. 17, 2749–2753 (2005).
    CAS Google Scholar
  75. Rao, S. G., Huang, L., Setyawan, W. & Hong, S. H. Large-scale assembly of carbon nanotubes. Nature 425, 36–37 (2003).
    CAS Google Scholar
  76. Wang, Y. et al. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl Acad. Sci. USA 103, 2026–2031 (2006).
    CAS Google Scholar
  77. Myung, S., Lee, M., Kim, G. T., Ha, J. S. & Hong, S. Large-scale “surface-programmed assembly” of pristine vanadium oxide nanowire-based devices. Adv. Mater. 17, 2361–2364 (2005).
    CAS Google Scholar
  78. Liu, X. G., Fu, L., Hong, S. H., Dravid, V. P. & Mirkin, C. A. Arrays of magnetic nanoparticles patterned via “dip-pen” nanolithography. Adv. Mater. 14, 231–234 (2002).
    Google Scholar
  79. Demers, L. M., Park, S. -J., Taton, T. A., Li, Z. & Mirkin, C. A. Orthogonal assembly of nanoparticles building blocks on dip-pen nanolithographically generated templates of DNA. Angew. Chem. Int. Edn 40, 3071–3073 (2001).
    CAS Google Scholar
  80. Demers, L. M. & Mirkin, C. A. Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays. Angew. Chem. Int. Edn 40, 3069–3071 (2001).
    CAS Google Scholar
  81. Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).
    CAS Google Scholar
  82. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).
    CAS Google Scholar
  83. Stranick, S. J., Parikh, A. N., Tao, Y. T., Allara, D. L. & Weiss, P. S. Phase-separation of mixed-composition self-assembled monolayers into nanometer-scale molecular domains. J. Phys. Chem. 98, 7636–7646 (1994).
    CAS Google Scholar
  84. Imabayashi, S., Hobara, D., Kakiuchi, T. & Knoll, W. Selective replacement of adsorbed alkanethiols in phase-separated binary self-assembled monolayers by electrochemical partial desorption. Langmuir 13, 4502–4504 (1997).
    CAS Google Scholar
  85. Salaita, K. S., Lee, S. W., Ginger, D. S. & Mirkin, C. A. DPN-generated nanostructures as positive resists for preparing lithographic masters or hole arrays. Nano Lett. 6, 2493–2498 (2006).
    CAS Google Scholar
  86. Onclin, S., Ravoo, B. J. & Reinhoudt, D. N. Engineering silicon oxide surfaces using self-assembled monolayers. Angew. Chem. Int. Edn 44, 6282–6304 (2005).
    CAS Google Scholar
  87. Mulder, A. et al. Molecular printboards on silicon oxide: Lithographic patterning of cyclodextrin monolayers with multivalent, fluorescent guest molecules. Small 1, 242–253 (2005).
    CAS Google Scholar
  88. Degenhart, G. H., Dordi, B., Schonherr, H. & Vancso, G. J. Micro- and nanofabrication of robust reactive arrays based on the covalent coupling of dendrimers to activated monolayers. Langmuir 20, 6216–6224 (2004).
    CAS Google Scholar
  89. Kim, K. H. et al. Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. Small 1, 866–874 (2005).
    CAS Google Scholar
  90. Wang, X. F. et al. Scanning probe contact printing. Langmuir 19, 8951–8955 (2003).
    CAS Google Scholar
  91. Kim, K. H., Moldovan, N. & Espinosa, H. D. A nanofountain probe with sub-100 nm molecular writing resolution. Small 1, 632–635 (2005).
    CAS Google Scholar
  92. Zhang, H., Elghanian, R., Amro, N. A., Disawal, S. & Eby, R. Dip pen nanolithography stamp tip. Nano Lett. 4, 1649–1655 (2004).
    CAS Google Scholar
  93. Wang, X. F., Bullen, D. A., Zou, J., Liu, C. & Mirkin, C. A. Thermally actuated probe array for parallel dip-pen nanolithography. J. Vac. Sci. Tech. B 22, 2563–2567 (2004).
    CAS Google Scholar
  94. Bullen, D. et al. Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84, 789–791 (2004).
    CAS Google Scholar
  95. Li, Y., Maynor, B. W. & Liu, J. Electrochemical AFM “dip-pen” nanolithography. J. Am. Chem. Soc. 123, 2105–2106 (2001).
    CAS Google Scholar
  96. Cai, Y. G. & Ocko, B. M. Electro pen nanolithography. J. Am. Chem. Soc. 127, 16287–16291 (2005).
    CAS Google Scholar
  97. Unal, K., Frommer, J. & Wickramasinghe, H. K. Ultrafast molecule sorting and delivery by atomic force microscopy. Appl. Phys. Lett. 88, 183105/1–183105/3 (2006).
    CAS Google Scholar
  98. Sheehan, P. E., Whitman, L. J., King, W. P. & Nelson, B. A. Nanoscale deposition of solid inks via thermal dip pen nanolithography. Appl. Phys. Lett. 85, 1589–1591 (2004).
    CAS Google Scholar
  99. Huang, L., Chang, Y. -H., Kakkassery, J. J. & Mirkin, C. A. Dip-pen nanolithography of high-melting-temperature molecules. J. Phys. Chem. B 110, 20756–20758 (2006).
    CAS Google Scholar
  100. Zou, J. et al. A mould-and-transfer technology for fabricating scanning probe microscopy probes. J. Micromech. Microeng. 14, 204–211 (2004).
    CAS Google Scholar
  101. Lewis, A. et al. Fountain pen nanochemistry: Atomic force control of chrome etching. Appl. Phys. Lett. 75, 2689–2691 (1999).
    CAS Google Scholar
  102. Ying, L. M. et al. The scanned nanopipette: A new tool for high resolution bioimaging and controlled deposition of biomolecules. Phys. Chem. Chem. Phys. 7, 2859–2866 (2005).
    CAS Google Scholar
  103. Bruckbauer, A. et al. Writing with DNA and protein using a nanopipet for controlled delivery. J. Am. Chem. Soc. 124, 8810–8811 (2002).
    CAS Google Scholar
  104. Bruckbauer, A. et al. Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc. 125, 9834–9839 (2003).
    CAS Google Scholar
  105. Sniadecki, N., Desai, R. A., Ruiz, S. A. & Chen, C. S. Nanotechnology for cell-substrate interactions. Ann. Biomed. Eng. 34, 59–74 (2006).
    Google Scholar
  106. Haynes, C. L. & Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001).
    CAS Google Scholar
  107. Lutwyche, M. et al. 5×5 2D AFM cantilever arrays a first step towards a terabit storage device. Sens. Actuators A 73, 89–94 (1999).
    CAS Google Scholar
  108. Minne, S. C. et al. Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73, 1742–1744 (1998).
    CAS Google Scholar
  109. Minne, S. C., Manalis, S. R., Atalar, A. & Quate, C. F. Independent parallel lithography using the atomic force microscope. J. Vac. Sci. Tech. B 14, 2456–2461 (1996).
    CAS Google Scholar
  110. Minne, S. C., Manalis, S. R. & Quate, C. F. Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl. Phys. Lett. 67, 3918–3920 (1995).
    CAS Google Scholar
  111. Despont, M., Drechsler, U., Yu, R., Pogge, H. B. & Vettiger, P. Wafer-scale microdevice transfer/interconnect: Its application in an AFM-based data-storage system. J. Microelectromech. Syst. 13, 895–901 (2004).
    CAS Google Scholar
  112. Eleftheriou, E. et al. Millipede - a MEMS-based scanning-probe data-storage system. IEEE Trans. Magnetics 39, 938–945 (2003).
    Google Scholar
  113. Vettiger, P. et al. The “Millipede” - nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002).
    Google Scholar
  114. King, W. P. et al. Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation. J. Microelectromech. Syst. 11, 765–774 (2002).
    CAS Google Scholar
  115. Vettiger, P. et al. The “Millipede” - more than one thousand tips for future afm data storage. IBM J. Res. Develop. 44, 323–340 (2000).
    CAS Google Scholar
  116. Zhang, M. et al. A mems nanoplotter with high-density parallel dip-pen manolithography probe arrays. Nanotechnology 13, 212–217 (2002).
    CAS Google Scholar
  117. Salaita, K. et al. Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small 1, 940–945 (2005).
    CAS Google Scholar
  118. Wang, X. F., Vincent, L., Bullen, D., Zou, J. & Liu, C. Scanning probe lithography tips with spring-on-tip designs: Analysis, fabrication, and testing. Appl. Phys. Lett. 87, 054102 (2005).
    Google Scholar
  119. Salaita, K. et al. Massively parallel dip-pen nanolithography with 55,000-pen two-dimensional arrays. Angew. Chem. Int. Edn 45 (2006).
  120. Lenhert, S., Sun, P., Wang, Y., Mirkin, C. A. & Fuchs, H. Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small 3, 71–75 (2007).
    CAS Google Scholar
  121. Liu, G. Y., Xu, S. & Qian, Y. L. Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc. Chem. Res. 33, 457–466 (2000).
    Google Scholar
  122. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001).
    CAS Google Scholar
  123. Rosner, B. et al. Active probes and microfluidic ink delivery for dip pen nanolithography. Proc. SPIE: BioMEMS Nanotechnol. 5275, 213–222 (2004).
    CAS Google Scholar
  124. Rosner, B. et al. Functional extensions of dip pen nanolithography: Active probes and microfluidic ink delivery. Smart Mater. Struct. 15, S124–S130 (2006).
    Google Scholar

Download references