Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy (original) (raw)
References
Grünwald, D., Singer, R. H. & Rout, M. Nuclear export dynamics of RNA-protein complexes. Nature475, 333–341 (2011). Article Google Scholar
Popken, P., Ghavami, A., Onck, P. R., Poolman, B. & Veenhoff, L. M. Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex. Mol. Biol. Cell26, 1386–1394 (2015). ArticleCAS Google Scholar
Yamada, J. et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol. Cell. Proteomics9, 2205–2224 (2010). ArticleCAS Google Scholar
Stoffler, D. et al. Cryo-electron tomography provides novel insights into nuclear pore architecture Implications for nucleocytoplasmic transport. J. Mol. Biol. 328, 119–130 (2003). ArticleCAS Google Scholar
Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science306, 1387–1390 (2004). ArticleCAS Google Scholar
Eibauer, M. et al. Structure and gating of the nuclear pore complex. Nature Commun. 6, 7532 (2015). ArticleCAS Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000). ArticleCAS Google Scholar
Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003). ArticleCAS Google Scholar
Lim, R. Y. H. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA103, 9512–9517 (2006). ArticleCAS Google Scholar
Lim, R. Y. H. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science318, 640–643 (2007). ArticleCAS Google Scholar
Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell130, 512–523 (2007). ArticleCAS Google Scholar
Hülsmann, B. B., Labokha, A. A. & Görlich, D. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell150, 738–751 (2012). Article Google Scholar
Akey, C. W. Visualization of transport-related configurations of the nuclear-pore transporter. Biophys. J. 58, 341–355 (1990). ArticleCAS Google Scholar
Dange, T., Grünwald, D., Grünwald, A., Peters, R. & Kubitscheck, U. Autonomy and robustness of translocation through the nuclear pore complex A single-molecule study. J. Cell Biol. 183, 77–86 (2008). ArticleCAS Google Scholar
Fahrenkrog, B. et al. Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. J. Struct. Biol. 140, 254–267 (2002). ArticleCAS Google Scholar
Stoffler, D., Goldie, K. N., Feja, B. & Aebi, U. Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J. Mol. Biol. 287, 741–752 (1999). ArticleCAS Google Scholar
Bestembayeva, A. et al. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes. Nature Nanotech. 10, 60–64 (2015). ArticleCAS Google Scholar
Kramer, A., Liashkovich, I., Ludwig, Y. & Shahin, V. Atomic force microscopy visualises a hydrophobic meshwork in the central channel of the nuclear pore. Pflugers Arch. 456, 155–162 (2008). ArticleCAS Google Scholar
Cardarelli, F., Lanzano, L. & Gratton, E. Capturing directed molecular motion in the nuclear pore complex of live cells. Proc. Natl Acad. Sci. USA109, 9863–9868 (2012). ArticleCAS Google Scholar
Ma, J., Goryaynov, A., Sarma, A. & Yang, W. Self-regulated viscous channel in the nuclear pore complex. Proc. Natl Acad. Sci. USA109, 7326–7331 (2012). ArticleCAS Google Scholar
Ma, J., Goryaynov, A. & Yang, W. Super-resolution 3D tomography of interactions and competition in the nuclear pore complex. Nature Struct. Mol. Biol. 23, 239–247 (2016). ArticleCAS Google Scholar
Ando, T., Uchihashi, T. & Fukuma, T. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 83, 337–437 (2008). ArticleCAS Google Scholar
Uchihashi, T., Kodera, N. & Ando, T. Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nature Protoc.7, 1193–1206 (2012). ArticleCAS Google Scholar
Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature468, 72–76 (2010). ArticleCAS Google Scholar
Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F-1-ATPase. Science333, 755–758 (2011). ArticleCAS Google Scholar
Miyagi, A. et al. Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. ChemPhysChem9, 1859–1866 (2008). ArticleCAS Google Scholar
Chatel, G., Desai, S. H., Mattheyses, A. L., Powers, M. A. & Fahrenkrog, B. Domain topology of nucleoporin Nup98 within the nuclear pore complex. J. Struct. Biol. 177, 81–89 (2012). ArticleCAS Google Scholar
Kapinos, L. E., Schoch, R. L., Wagner, R. S., Schleicher, K. D. & Lim, R. Y. H. Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys. J. 106, 1751–1762 (2014). ArticleCAS Google Scholar
Vesenka, J., Manne, S., Giberson, R., Marsh, T. & Henderson, E. Colloidal gold particles as an incompressible atomic-force microscope imaging standard for assessing the compressibility of biomolecules. Biophys. J. 65, 992–997 (1993). ArticleCAS Google Scholar
Chattopadhyay, K., Elson, E. L. & Frieden, C. The kinetics of conformational fluctuations in an unfolded protein measured by fluorescence methods. Proc. Natl Acad. Sci. USA102, 2385–2389 (2005). ArticleCAS Google Scholar
Windisch, B., Bray, D. & Duke, T. Balls and chains - A mesoscopic approach to tethered protein domains. Biophys. J. 91, 2383–2392 (2006). ArticleCAS Google Scholar
Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993). ArticleCAS Google Scholar
Schmidt, H. B. & Görlich, D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. eLife4, e04251 (2015). Article Google Scholar
Osmanovic, D. et al. Bistable collective behavior of polymers tethered in a nanopore. Phys. Rev. E85, 061917 (2012). Article Google Scholar
Grünwald, D. & Singer, R. H. In vivo imaging of labelled endogenous b-actin mRNA during nucleocytoplasmic transport. Nature467, 604–609 (2010). Article Google Scholar
Tagliazucchi, M., Peleg, O., Kroger, M., Rabin, Y. & Szleifer, I. Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Proc. Natl Acad. Sci. USA110, 3363–3368 (2013). ArticleCAS Google Scholar
Ando, D. et al. Nuclear pore complex protein sequences determine overall copolymer brush structure and function. Biophys. J. 106, 1997–2007 (2014). ArticleCAS Google Scholar
Ghavami, A., Veenhoff, L. M., van der Giessen, E. & Onck, P. R. Probing the disordered domain of the nuclear pore complex through coarse-grained molecular dynamics simulations. Biophys. J. 107, 1393–1402 (2014). ArticleCAS Google Scholar
Mincer, J. S. & Simon, S. M. Simulations of nuclear pore transport yield mechanistic insights and quantitative predictions. Proc. Natl Acad. Sci. USA108, E351–E358 (2011). ArticleCAS Google Scholar
Gamini, R., Han, W., Stone, J. E. & Schulten, K. Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating. PLoS Comp. Biol. 10, e1003488 (2014). Article Google Scholar
Peyro, M., Soheilypour, M., Ghavami, A. & Mofrad, M. R. K. Nucleoporin's like charge regions are major regulators of FG coverage and dynamics inside the nuclear pore complex. PLoS ONE10, e0143745 (2015). Article Google Scholar
Schmidt, H. B. & Görlich, D. Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem. Sci. 41, 46–61 (2016). ArticleCAS Google Scholar
Hough, L. E. et al. The molecular mechanism of nuclear transport revealed by atomic-scale measurements. eLife4, e10027 (2015). Article Google Scholar
Milles, S. et al. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell163, 734–745 (2015). ArticleCAS Google Scholar
Hoh, J. H. Functional protein domains from the thermally driven motion of polypeptide chains A proposal. Proteins32, 223–228 (1998). ArticleCAS Google Scholar
Fuxreiter, M. et al. Disordered proteinaceous machines. Chem. Rev. 114, 6806–6843 (2014). ArticleCAS Google Scholar