Towards human exploration of space: The THESEUS review series on immunology research priorities (original) (raw)
Frippiat, J. P. Contribution of the urodele amphibian Pleurodeles waltl to the analysis of spaceflight-associated immune system deregulation. Mol. Immunol.56, 434–441 (2013). ArticleCASPubMed Google Scholar
Grimm, D., Wise, P., Lebert, M., Richter, P. & Baatout, S. How and why does the proteome respond to microgravity? Expert Rev. Proteomics8, 13–27 (2011). ArticlePubMed Google Scholar
Gueguinou, N. et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit? J. Leukoc. Biol.86, 1027–1038 (2009). ArticleCASPubMed Google Scholar
Pietsch, J. et al. The effects of weightlessness on the human organism and mammalian cells. Curr. Mol. Med.11, 350–364 (2011). ArticleCASPubMed Google Scholar
Kimzey, S. L. in Biomedical Results from Skylab 248–282 (eds Johnson, R. S. & Dietlein, L. F.) (NASA, 1977).
Crucian, B. et al. A case of persistent skin rash and rhinitis with immune system dysregulation onboard the International Space Station. J. Allergy Clin. Immunol. Pract.4, 759–762 (2016). ArticlePubMed Google Scholar
Crucian, B. et al. Incidence of clinical symptoms during long-duration orbital spaceflight. Int. J. Gen. Med., (in the press).
Baqai, F. P. et al. Effects of spaceflight on innate immune function and antioxidant gene expression. J. Appl. Physiol.106, 1935–1942 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gridley, D. S. et al. Genetic models in applied physiology—Selected contribution: Effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J. Appl. Physiol.94, 2095–2103 (2003). ArticlePubMed Google Scholar
Grove, D. S., Pishak, S. A. & Mastro, A. M. The effect of a 10-day space-flight on the function, phenotype, and adhesion molecule expression of splenocytes and lymph-node lymphocytes. Exp. Cell Res.219, 102–109 (1995). ArticleCASPubMed Google Scholar
Stowe, R. P. et al. Leukocyte subsets and neutrophil function after short-term spaceflight. J. Leukoc. Biol.65, 179–186 (1999). ArticleCASPubMed Google Scholar
Kaur, I., Simons, E. R., Castro, V. A., Ott, C. M. & Pierson, D. L. Changes in neutrophil functions in astronauts. Brain Behav. Immun.18, 443–450 (2004). ArticleCASPubMed Google Scholar
Rykova, M. P., Antropova, E. N., Larina, I. M. & Morukov, B. V. Humoral and cellular immunity in cosmonauts after the ISS missions. Acta Astronaut63, 697–705 (2008). Article Google Scholar
Crucian, B., Stowe, R., Quiriarte, H., Pierson, D. & Sams, C. Monocyte phenotype and cytokine production profiles are dysregulated by short-duration spaceflight. Aviat. Space Environ. Med.82, 857–862 (2011). ArticleCASPubMed Google Scholar
Kaur, I., Simons, E. R., Castro, V. A., Ott, C. M. & Pierson, D. L. Changes in monocyte functions of astronauts. Brain Behav. Immun.19, 547–554 (2005). ArticleCASPubMed Google Scholar
Kaur, I., Simons, E. R., Kapadia, A. S., Ott, C. M. & Pierson, D. L. Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin. Vaccine Immunol.15, 1523–1528 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lesnyak, A. T. et al. Immune changes in test animals during spaceflight. J. Leukoc. Biol.54, 214–226 (1993). ArticleCASPubMed Google Scholar
Meshkov, D. & Rykova, M. The natural cytotoxicity in cosmonauts on board space stations. Acta Astronaut36, 719–726 (1995). ArticleCASPubMed Google Scholar
Taylor, G. R. & Janney, R. P. In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space-flight. J. Leukoc. Biol.51, 129–132 (1992). ArticleCASPubMed Google Scholar
Cohrs, R. J., Mehta, S. K., Schmid, D. S., Gilden, D. H. & Pierson, D. L. Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J. Med. Virol.80, 1116–1122 (2008). ArticleCASPubMedPubMed Central Google Scholar
Crucian, B. E., Cubbage, M. L. & Sams, C. F. Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight. J. Interf. Cytok. Res.20, 547–556 (2000). ArticleCAS Google Scholar
Meehan, R., Whitson, P. & Sams, C. The role of psychoneuroendocrine factors on spaceflight-induced immunological alterations. J. Leukoc. Biol.54, 236–244 (1993). ArticleCASPubMed Google Scholar
Mehta, S. K. et al. Reactivation of latent viruses is associated with increased plasma cytokines in astronauts. Cytokine61, 205–209 (2013). ArticleCASPubMed Google Scholar
Mehta, S. K., Stowe, R. P., Feiveson, A. H., Tyring, S. K. & Pierson, D. L. Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J. Infect. Dis.182, 1761–1764 (2000). ArticleCASPubMed Google Scholar
Pierson, D. L., Stowe, R. P., Phillips, T. M., Lugg, D. J. & Mehta, S. K. Epstein-Barr virus shedding by astronauts during space flight. Brain Behav. Immun.19, 235–242 (2005). ArticleCASPubMed Google Scholar
Stowe, R. P., Mehta, S. K., Ferrando, A. A., Feeback, D. L. & Pierson, D. L. Immune responses and latent herpesvirus reactivation in spaceflight. Aviat. Space Environ. Med.72, 884–891 (2001). CASPubMed Google Scholar
Stowe, R. P., Pierson, D. L. & Barrett, A. D. T. Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosom Med63, 891–895 (2001). ArticleCASPubMed Google Scholar
Cogoli, A., Tschopp, A. & Fuchsbislin, P. Cell sensitivity to gravity. Science225, 228–230 (1984). ArticleCASPubMed Google Scholar
Cogoli, A. The effect of hypogravity and hypergravity on cells of the immune system. J. Leukoc. Biol.54, 259–268 (1993). ArticleCASPubMed Google Scholar
Cogoli, A. The effect of space flight on human cellular immunity. Environ. Med.37, 107–116 (1993). CASPubMed Google Scholar
Gaignier, F. et al. Three weeks of murine hindlimb unloading induces shifts from B to T and from Th to Tc splenic lymphocytes in absence of stress and differentially reduces cell-specific mitogenic responses. PLos ONE9, e92664 (2014). ArticlePubMedPubMed Central Google Scholar
Gridley, D. S. et al. Spaceflight effects on T lymphocyte distribution, function and gene expression. J. Appl. Physiol.106, 194–202 (2009). ArticlePubMed Google Scholar
Cogoli-Greuter, M. Effect of gravity changes on the cytoskeleton in human lymphocytes Gravit. Space Biol. Bull.17, 27–37 (2004). Google Scholar
Sciola, L., Cogoli-Greuter, M., Cogoli, A., Spano, A. & Pippia, P. Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells. Adv. Space Res.24, 801–805 (1999). ArticleCASPubMed Google Scholar
Boonyaratanakornkit, J. B. et al. Key gravity-sensitive signaling pathways drive T-cell activation. FASEB J.19, 2020–2022 (2005). ArticleCASPubMed Google Scholar
Cogoli, A. et al. Mitogenic signal-transduction in T-lymphocytes in microgravity. J. Leukoc. Biol.53, 569–575 (1993). ArticleCASPubMed Google Scholar
Pippia, P. et al. Activation signals of T lymphocytes in microgravity. J. Biotechnol.47, 215–222 (1996). ArticleCASPubMed Google Scholar
Walther, I. et al. Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett.436, 115–118 (1998). ArticleCASPubMed Google Scholar
Cogoli, A. Signal transduction in T lymphocytes in microgravity. Gravit. Space Biol. Bull.10, 5–16 (1997). CASPubMed Google Scholar
Hughes-Fulford, M., Chang, T. T., Martinez, E. M. & Li, C. F. Spaceflight alters expression of microRNA during T-cell activation. FASEB J.29, 4893–4900 (2015). ArticleCASPubMedPubMed Central Google Scholar
Meloni, M. A. et al. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton68, 125–137 (2011). ArticleCASPubMed Google Scholar
Meloni, M. A., Galleri, G., Pippia, P. & Cogoli-Greuter, M. Cytoskeleton changes and impaired motility of monocytes at modelled low gravity. Protoplasma229, 243–249 (2006). ArticleCASPubMed Google Scholar
Meloni, M. A. et al. Modeled microgravity affects motility and cytoskeletal structures. J. Gravit. Physiol.11, P197–P198 (2004). CASPubMed Google Scholar
Cogoli-Greuter, M. et al. Movements and interactions of leukocytes in microgravity. J. Biotechnol.47, 279–287 (1996). ArticleCASPubMed Google Scholar
Pellis, N. R. et al. Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell Dev. Biol. Anim.33, 398–405 (1997). ArticleCASPubMed Google Scholar
Janmey, P. A. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev.78, 763–781 (1998). ArticleCASPubMed Google Scholar
Chang, T. T. et al. The Rel/NF-kappa B pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J. Leukoc. Biol.92, 1133–1145 (2012). ArticleCASPubMedPubMed Central Google Scholar
Thiel, C. S. et al. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun. Signal.10, 1 (2012). ArticleCASPubMedPubMed Central Google Scholar
Battista, N. et al. 5-Lipoxygenase-dependent apoptosis of human lymphocytes in the International Space Station: data from the ROALD experiment. FASEB J.26, 1791–1798 (2012). ArticleCASPubMed Google Scholar
Maccarrone, M. et al. Creating conditions similar to those that occur during exposure of cells to microgravity induces apoptosis in human lymphocytes by 5-lipoxygenase-mediated mitochondrial uncoupling and cytochrome c release. J. Leukoc. Biol.73, 472–481 (2003). ArticleCASPubMed Google Scholar
Tauber, S. et al. Signal transduction in primary human T lymphocytes in altered gravity—results of the MASER-12 suborbital space flight mission. Cell Commun. Signal.11, 32 (2013). ArticleCASPubMedPubMed Central Google Scholar
Crucian, B. E., Stowe, R. P., Pierson, D. L. & Sams, C. F. Immune system dysregulation following short- vs long-duration spaceflight. Aviat. Space Environ. Med.79, 835–843 (2008). ArticlePubMed Google Scholar
Crucian, B. et al. Alterations in adaptive immunity persist during long-duration spaceflight. Npj Micrograv.1, 15013 (2015). Article Google Scholar
Crucian, B. E. et al. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J. Interferon Cytok. Res.34, 778–786 (2014). ArticleCAS Google Scholar
Voss, E. W. Prolonged weightlessness and humoral immunity. Science225, 214–215 (1984). ArticlePubMed Google Scholar
Konstantinova, I. V., Rykova, M. P., Lesnyak, A. T. & Antropova, E. A. Immune changes during long-duration missions. J. Leukoc. Biol.54, 189–201 (1993). ArticleCASPubMed Google Scholar
Gueguinou, N. et al. Stress response and humoral immune system alterations related to chronic hypergravity in mice. Psychoneuroendocrinology37, 137–147 (2012). ArticleCASPubMed Google Scholar
Michurina, T. V., Domaratskaya, E. I., Nikonova, T. M. & Khrushchov, N. G. Blood and clonogenic hematopoietic-cells of newts after the space-flight. Adv. Space Res.17, 295–298 (1995). Article Google Scholar
Bennett, M. F. & Daigle, K. R. Temperature, stress and the distribution of leukocytes in red-spotted newts, notophthalmus-viridescens. J. Comp. Physiol.153, 81–83 (1983). Article Google Scholar
Bascove, M. & Frippiat, J. P. Molecular characterization of Pleurodeles waltl activation-induced cytidine deaminase. Mol. Immunol.47, 1640–1649 (2010). ArticleCASPubMed Google Scholar
Boudarra, N., Frippiat, C., Dournon, C. & Frippiat, J. P. An alternative internal splicing site defines new Ikaros isoforms in Pleurodeles waltl. Dev. Comp. Immunol.26, 659–673 (2002). ArticleCASPubMed Google Scholar
Fonte, C., Gruez, A., Ghislin, S. & Frippiat, J. P. The urodele amphibian Pleurodeles waltl has a diverse repertoire of immunoglobulin heavy chains with polyreactive and species-specific features. Dev. Comp. Immunol.53, 371–384 (2015). ArticleCASPubMed Google Scholar
Frippiat, C., Kremarik, P., Ropars, A., Dournon, C. & Frippiat, J. P. The recombination-activating gene 1 of Pleurodeles waltl (urodele amphibian) is transcribed in lymphoid tissues and in the central nervous system. Immunogenetics52, 264–275 (2001). ArticleCASPubMed Google Scholar
Gueguinou, N., Huin-Schohn, C., Ouzren-Zarhloul, N., Ghislin, S. & Frippiat, J. P. Molecular cloning and expression analysis of Pleurodeles waltl complement component C3 under normal physiological conditions and environmental stresses. Dev. Comp. Immunol.46, 180–185 (2014). ArticleCASPubMed Google Scholar
Schaerlinger, B., Bascove, M. & Frippiat, J. P. A new isotype of immunoglobulin heavy chain in the urodele amphibian Pleurodeles waltl predominantly expressed in larvae. Mol. Immunol.45, 776–786 (2008). ArticleCASPubMed Google Scholar
Schenten, V., Gueguinou, N., Baatout, S. & Frippiat, J. P. Modulation of Pleurodeles waltl DNA Polymerase mu expression by extreme conditions encountered during spaceflight. PLos ONE8, e69647 (2013). ArticleCASPubMedPubMed Central Google Scholar
Schaerlinger, B. & Frippiat, J. P. IgX antibodies in the urodele amphibian Ambystoma mexicanum. Dev. Comp. Immunol.32, 908–915 (2008). ArticleCASPubMed Google Scholar
Boxio, R., Dournon, C. & Frippiat, J. P. Effects of a long-term spaceflight on immunoglobulin heavy chains of the urodele amphibian Pleurodeles waltl. J. Appl. Physiol.98, 905–910 (2005). ArticleCASPubMed Google Scholar
Bascove, M., Huin-Schohn, C., Gueguinou, N., Tschirhart, E. & Frippiat, J. P. Spaceflight-associated changes in immunoglobulin VH gene expression in the amphibian Pleurodeles waltl. FASEB J.23, 1607–1615 (2009). ArticleCASPubMed Google Scholar
Bascove, M., Gueguinou, N., Schaerlinger, B., Gauquelin-Koch, G. & Frippiat, J. P. Decrease in antibody somatic hypermutation frequency under extreme, extended spaceflight conditions. FASEB J.25, 2947–2955 (2011). ArticleCASPubMed Google Scholar
Huin-Schohn, C. et al. Gravity changes during animal development affect IgM heavy-chain transcription and probably lymphopoiesis. FASEB J.27, 333–341 (2013). ArticleCASPubMed Google Scholar
Ghislin, S., Ouzren-Zarhloul, N., Kaminski, S. & Frippiat, J. P. Hypergravity exposure during gestation modifies the TCRb repertoire of newborn mice. Sci. Rep.5, e92664 (2015). ArticleCAS Google Scholar
Lescale, C. et al. Hind limb unloading, a model of spaceflight conditions, leads to decreased B lymphopoiesis similar to aging. FASEB J.29, 455–463 (2015). ArticleCASPubMed Google Scholar
Wilson, J. W. et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl Acad. Sci. USA104, 16299–16304 (2007). ArticlePubMedPubMed Central Google Scholar
Wilson, J. W. et al. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLos ONE3, e3923 (2008). ArticleCASPubMedPubMed Central Google Scholar
Leys, N. et al. The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Anton. Leeuw. Int. J. G.96, 227–245 (2009). ArticleCAS Google Scholar
Crabbe, A. et al. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl. Environ. Microb.77, 1221–1230 (2011). ArticleCAS Google Scholar
Juergensmeyer, M. A., Juergensmeyer, E. A. & Guikema, J. A. Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Micrograv. Sci. Tech.12, 41–47 (1999). CAS Google Scholar
Lebsack, T. W. et al. Microarray analysis of spaceflown murine thymus tissue reveals changes in gene expression regulating stress and glucocorticoid receptors. J. Cell Biochem.110, 372–381 (2010). CASPubMed Google Scholar
Tobaldini, E. et al. One night on-call: Sleep deprivation affects cardiac autonomic control and inflammation in physicians. Eur. J. Intern. Med.24, 664–670 (2013). ArticlePubMed Google Scholar
Flierl, M. A. et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature449, 721–725 (2007). ArticleCASPubMed Google Scholar
Sternberg, E. M. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat. Rev. Immunol.6, 318–328 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kaufmann, I. et al. Parabolic flight primes cytotoxic capabilities of polymorphonuclear leucocytes in humans. Eur. J. Clin. Invest.39, 723–728 (2009). ArticleCASPubMed Google Scholar
Stowe, R. P., Sams, C. F. & Pierson, D. L. Effects of mission duration on neuroimmune responses in astronauts. Aviat. Space Environ. Med.74, 1281–1284 (2003). PubMed Google Scholar
Crucian, B. & Sams, C. Immune system dysregulation during spaceflight: clinical risk for exploration-class missions. J. Leukoc. Biol.86, 1017–1018 (2009). ArticleCASPubMed Google Scholar
Mehta, S. K., Crucian, B., Pierson, D. L., Sams, C. & Stowe, R. P. Monitoring immune system function and reactivation of latent viruses in the Artificial Gravity Pilot Study. J. Gravit. Physiol.14, P21–P25 (2007). PubMed Google Scholar
Crucian, B. E. et al. Immune status, latent viral reactivation, and stress during long-duration head-down bed rest. Aviat Space Environ. Med. (2009); 80, A37–A44 (2009). ArticlePubMed Google Scholar
Gmünder, F. K. et al. Effect of head-down tilt bedrest (10 days) on lymphocyte reactivity. Acta Physiol. Scand. Suppl.604, 131–141 (1992). PubMed Google Scholar
Schmitt, D. A. et al. Head-down tilt bed rest and immune responses. Pflugers Arch.441, R79–R84 (2000). ArticleCASPubMed Google Scholar
Choukèr, A. et al. Simulated microgravity, psychic stress, and immune cells in men: observations during 120-day 6 degrees HDT. J. Appl. Physiol.90, 1736–1743 (2001). ArticlePubMed Google Scholar
Shearer, W. T. et al. Immune responses in adult female volunteers during the bed-rest model of spaceflight: antibodies and cytokines. J. Allergy Clin. Immunol.123, 900–905 (2009). ArticleCASPubMed Google Scholar
Kelsen, J. et al. 21 Days head-down bed rest induces weakening of cell-mediated immunity—Some spaceflight findings confirmed in a ground-based analog. Cytokine59, 403–409 (2012). ArticleCASPubMed Google Scholar