Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry (original) (raw)

References

  1. Davies, P.J. The plant hormones: their nature, occurrence, and functions. In Plant Hormones: Physiology, Biochemistry and Molecular Biology 2nd edn. (eds. Davis, P.J.) 1–12 (Kluwer Academic Publishers, Netherlands, 1995).
  2. Davies, P.J. The plant hormones: their nature, occurrence, and functions. In Plant Hormones: Biosynthesis, Signal Transduction, Action! 3rd edn. (eds. Davis, P.J.) 1–15 (Kluwer Academic Publishers, Netherlands, 2004).
  3. Crozier, A., Kamiya, Y., Bishop, G. & Yokota, T. Biosynthesis of hormones and elicitor molecules. In Biochemistry and Molecular Biology of Plants (eds. Buchanan, B.B., Gruissem, W. & Jones, R.L.) 850–929 (American Society of Plant Physiologists, Maryland, 2000).
  4. Aloni, R., Aloni, E., Langhans, M. & Ullrich, C.I. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot. 97, 883–893 (2006).
    Article CAS Google Scholar
  5. Ho, T.H.D., Gomez-Cadenas, A., Zentella, R. & Casaretto, J. Crosstalk between abscisic acid and gibberillins in barley aleurone layers. J. Plant Growth Regul. 22, 185–194 (2003).
    Article CAS Google Scholar
  6. Nemhauser, J.L., Hong, F. & Chory, J. Different plant hormones regulate similar processes through largely non-overlapping transcriptional responses. Cell 126, 467–475 (2006).
    Article CAS Google Scholar
  7. Gazzarina, S. & McCourt, P. Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr. Opin. Plant Biol. 4, 387–391 (2001).
    Article Google Scholar
  8. Reymond, P. & Farmer, E.E. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1, 404–411 (1998).
    Article CAS Google Scholar
  9. River, L. & Crozier, A. Abscisic acid and related compounds. In Principles and Practice of Plant Hormones Analysis Vols. 1, 2, 111–167 (Academic Press, London, 1987).
  10. Hedden, P. Modern methods for the quantitative analysis of plant hormones. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 107–129 (1993).
    Article CAS Google Scholar
  11. Brenner, M.L. Modern methods for plant growth substance analysis. Ann. Rev. Plant Physiol. 32, 511–538 (1981).
    Article CAS Google Scholar
  12. Reeve, D.R. & Crozier, A. In Molecular and Sub-cellular Aspects of Hormonal Regulations in Plants (Springer Press, Berlin, 1980).
  13. Weiler, E.W. Immunoassay of plant growth regulators. Annu. Rev. Plant Physiol. 35, 85–95 (1984).
    Article CAS Google Scholar
  14. Reinhold, L., Harborne, J.B. & Swain, T. In Progress in Phyochemistry (Oxford, Pergamon, 1981).
  15. Davis, P.J. In Plant Hormones and Their Role in Plant Growth and Development (Dordrecht, Nijhoff, 1987).
  16. Linskens, H.F. & Jackson, J.F. In Gas Chromatography/Mass Spectrometry: Modern Methods of Plant Analysis (Springer-Verlag, Berlin, 1986).
  17. Pan, X. & Wang, X. Profiling of plant hormones by mass spectrometry. J. Chromatogr. B 877, 2806–2813 (2009).
    Google Scholar
  18. Birkemeyer, C., Kolasa, A. & Kopka, J. Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. J. Chromatogr. A 993, 89–102 (2003).
    Article CAS Google Scholar
  19. Müller, A., Düchting, P. & Weiler, E.W. A multiplex GC - MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216, 44–56 (2002).
    Article Google Scholar
  20. Kowalczyk, M. & Sandberg, G. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 127, 1845–1853 (2001).
    Article CAS Google Scholar
  21. Weber, H., Vick, B.A. & Farmer, E.E. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc. Natl. Acad. Sci. USA 94, 10473–10478 (1997).
    Article CAS Google Scholar
  22. Engelberth, J. et al. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal. Biochem. 312, 242–250 (2003).
    Article CAS Google Scholar
  23. Schmelz, E.A. et al. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc. Natl. Acad. Sci. USA 100, 10552–10557 (2003).
    Article CAS Google Scholar
  24. Schmelz, E.A. et al. The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J. 39, 790–808 (2004).
    Article CAS Google Scholar
  25. Gomez-Cadenas, A. et al. Direct analysis of abscisic acid in crude plant extracts by liquid chromatography-electrospray/tandem mass spectrometry. Phytochem. Anal. 13, 228–234 (2002).
    Article CAS Google Scholar
  26. Durgbanshi, A. et al. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J. Agric. Food Chem. 53, 8437–8442 (2005).
    Article CAS Google Scholar
  27. Chiwocha, S.D. et al. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J. 35, 405–417 (2003).
    Article CAS Google Scholar
  28. Lopez-Carbonell, M. & Jauegui, O. A rapid method for analysis of abscisic acid (ABA) in crude extracts of water stressed Arabidopsis thaliana plants by liquid chromatography-mass spectrometry in tandem mode. Plant Physiol. Biochem. 43, 407–411 (2005).
    Article CAS Google Scholar
  29. Matsuda, F. et al. Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography-electrospray ionization-tandem mass spectrometry. Biosci. Biotechnol. Biochem. 69, 778–783 (2005).
    Article CAS Google Scholar
  30. Ross, A.R. et al. Determination of endogenous and supplied deuterated abscisic acid in plant tissues by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry with multiple reaction monitoring. Anal. Biochem. 329, 324–333 (2004).
    Article CAS Google Scholar
  31. Wilbert, S., Ericsson, L. & Gordon, M. Quantification of jasmonic acid, methyl jasmonate, and salicylic acid in plants by capillary liquid chromatography electrospray tandem mass spectrometry. Anal. Biochem. 257, 186–194 (1998).
    Article CAS Google Scholar
  32. Zhou, R. et al. Rapid extraction of abscisic acid and its metabolites for liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1010, 75–85 (2003).
    Article CAS Google Scholar
  33. Pan, X., Welti, R. & Wang, X. Simultaneous quantification of plant hormones by high-performance liquid-chromatography electrospray tandem mass spectrometry. Phytochemistry 69, 1773–1781 (2008).
    Article CAS Google Scholar
  34. Hong, Y., Pan, X., Welti, R. & Wang, X. Phospholipase Dα3 regulates arabidopsis response to salinity and water deficits. Plant Cell 20, 803–816 (2008).
    Article CAS Google Scholar
  35. Yang, W., Devaiah, S., Pan, X., Isaac, G., Welti, R. & Wang, X. A LRR-containing acyl hydrolase mediates jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. J. Biol. Chem. 282, 18116–18128 (2007).
    Article CAS Google Scholar
  36. Izumi, Y., Okazawa, A., Bamba, T., Kobayashi, A. & Fukusaki, E. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal. Chim. Acta 648, 215–225 (2009).
    Article CAS Google Scholar
  37. Xu, X., Keefer, L., Ziegler, R. & Veenstra, T. A liquid chromatography-mass spectrometry method for the quantitative analysis of urinary endogenous estrogen metabolites. Nat. Protoc. 2, 1350–1355 (2007).
    Article CAS Google Scholar

Download references