Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA (original) (raw)
References
Boyle, A.P. et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res.21, 456–464 (2011). ArticleCAS Google Scholar
Crawford, G.E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res.16, 123–131 (2006). ArticleCAS Google Scholar
Boyle, A.P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell132, 311–322 (2008). ArticleCAS Google Scholar
Song, L. & Crawford, G.E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc.2010 doi:10.1101/pdb.prot5384 (2010).
Keene, M.A., Corces, V., Lowenhaupt, K. & Elgin, S.C. DNase I hypersensitive sites in Drosophila chromatin occur at the 5′ ends of regions of transcription. Proc. Natl. Acad. Sci. USA78, 143–146 (1981). ArticleCAS Google Scholar
McGhee, J.D., Wood, W.I., Dolan, M., Engel, J.D. & Felsenfeld, G. A 200 base pair region at the 5′ end of the chicken adult β-globin gene is accessible to nuclease digestion. Cell27 (1, Part 2), 45–55 (1981). ArticleCAS Google Scholar
Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature421, 448–453 (2003). Article Google Scholar
Gross, D.S. & Garrard, W.T. Nuclease hypersensitive sites in chromatin. Ann. Rev. Biochem.57, 159–197 (1988). ArticleCAS Google Scholar
Stalder, J. et al. Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I. Cell20, 451–460 (1980). ArticleCAS Google Scholar
Hogan, G.J., Lee, C.-K. & Lieb, J.D. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet.2, e158 (2006). Article Google Scholar
Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R. & Lieb, J.D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res.17, 877–885 (2007). ArticleCAS Google Scholar
Giresi, P.G. & Lieb, J.D. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods48, 233–239 (2009). ArticleCAS Google Scholar
Gaulton, K.J. et al. A map of open chromatin in human pancreatic islets. Nat. Genet.42, 255–259 (2010). ArticleCAS Google Scholar
Nagy, P.L., Cleary, M.L., Brown, P.O. &, Lieb J.D. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc. Natl. Acad. Sci. USA100, 6364–6369 (2003). ArticleCAS Google Scholar
Song, L. et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res.21, 1757–1767 (2011). ArticleCAS Google Scholar
Ponts, N. et al. Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res.20, 228–238 (2010). ArticleCAS Google Scholar
Louwers, M. et al. Tissue- and expression level-specific chromatin looping at maize b1 epialleles. Plant Cell21, 832–842 (2009). ArticleCAS Google Scholar
Langmead, B., Trapnell, C., Pop, M. &, Salzberg S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol.10, R25 (2009). Article Google Scholar
Rashid, N., Giresi, P.G., Ibrahim, J.G. & Lieb J.D. ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions. Genome Biol.12, R67 (2011). ArticleCAS Google Scholar
ENCODE Project Consortium. et al. A user's guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biol.9, e1001046 (2011).
Birney, E., Lieb, J.D., Furey, T.S., Crawford, G.E. & Iyer, V.R. Allele-specific and heritable chromatin signatures in humans. Hum. Mol. Genet.19, R204 (2010). ArticleCAS Google Scholar
Hurtado, A., Holmes, K.A., Ross-Innes, C.S., Schmidt, D. & Carroll, J.S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat. Genet.43, 27–33 (2011). ArticleCAS Google Scholar
Eeckhoute, J. et al. Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers. Genome Res.19, 372–380 (2009). ArticleCAS Google Scholar
Egelhofer, T.A. et al. An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol.18, 91–93 (2011). ArticleCAS Google Scholar
Li, Q, Brown, J.B., Huang, H. & Bickel, P. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat.5, 1752–1779 (2011). Article Google Scholar
Lassmann, T., Hayashizaki, Y. & Daub, C.O. TagDust—a program to eliminate artifacts from next generation sequencing data. Bioinformatics25, 2839–2840 (2009). ArticleCAS Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows ∀ Wheeler transform. Bioinformatics25, 1754–1760 (2009). ArticleCAS Google Scholar
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol.9, R137 (2008). Article Google Scholar
Boyle, A.P., Guinney, J., Crawford, G.E. & Furey, T.S. F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics24, 2537–2538 (2008). ArticleCAS Google Scholar
Haring, M. et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods3, 11 (2007). Article Google Scholar
Lee, T.I., Johnstone, S.E. & Young, R.A. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc.1, 729–748 (2006). ArticleCAS Google Scholar
Ren, B. & Dynlacht, B.D. Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors. Methods Enzymol.376, 304–315 (2004). ArticleCAS Google Scholar
Oberley, M.J., Tsao, J., Yau, P. & Farnham, P.J. High-throughput screening of chromatin immunoprecipitates using CpG-island microarrays. Methods Enzymol.376, 315–334 (2004). ArticleCAS Google Scholar
Oberley, M.J. & Farnham, P.J. Probing chromatin immunoprecipitates with CpG-island microarrays to identify genomic sites occupied by DNA-binding proteins. Methods Enzymol.371, 577–596 (2003). ArticleCAS Google Scholar
Lieb, J.D. Genome-wide mapping of protein-DNA interactions by chromatin immunoprecipitation and DNA microarray hybridization. Methods Mol. Biol.224, 99–109 (2003). CASPubMed Google Scholar
Ciccone, D.N., Morshead, K.B. & Oettinger, M.A. Chromatin immunoprecipitation in the analysis of large chromatin domains across murine antigen receptor loci. Methods Enzymol.376, 334–348 (2004). ArticleCAS Google Scholar
Chaya, D. & Zaret, K.S. Sequential chromatin immunoprecipitation from animal tissues. Methods Enzymol.376, 361–372 (2004). ArticleCAS Google Scholar
Buck, M.J. & Lieb, J.D. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics83, 349–360 (2004). ArticleCAS Google Scholar
Bernstein, B.E., Humphrey, E.L., Liu, C.L. & Schreiber, S.L. The use of chromatin immunoprecipitation assays in genome-wide analyses of histone modifications. Methods Enzymol.376, 349–360 (2004). ArticleCAS Google Scholar
Bannister, A.J. & Kouzarides, T. Histone methylation: recognizing the methyl mark. Methods Enzymol.376, 269–288 (2004). ArticleCAS Google Scholar
Nammo, T., Rodriguez-Segui, S.A. & Ferrer, J. Mapping open chromatin with formaldehyde-assisted isolation of regulatory elements. Methods Mol. Biol.791 (1940-6029 (Electronic)), 287–296 (2011). ArticleCAS Google Scholar
Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science290, 2306–2309 (2000). ArticleCAS Google Scholar
Buck, M.J., Nobel, A.B. & Lieb, J.D. ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol.6, R97 (2005). Article Google Scholar
Sun, W., Buck, M., Patel, M. & Davis, I.J. Improved ChIP-chip analysis by a mixture model approach. BMC Bioinformatics10, 173 (2009). Article Google Scholar
Schmittgen, T.D. & Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc.3, 1101–1108 (2008). ArticleCAS Google Scholar
Fujita, P.A. et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res.39 (Database issue): D876–D882 (2011). ArticleCAS Google Scholar