Small-scale isolation of synaptic vesicles from mammalian brain (original) (raw)

References

  1. Jahn, R. & Südhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).
    Article CAS Google Scholar
  2. Morciano, M. et al. Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J. Neurochem. 95, 1732–1745 (2005).
    Article CAS Google Scholar
  3. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).
    Article CAS Google Scholar
  4. De Robertis, E., Rodriguez De Lores Arnaiz, G., Salganicoff, L., Pellegrino De Iraldi, A. & Zieher, L.M. Isolation of synaptic vesicles and structural organization of the acetycholine system within brain nerve endings. J. Neurochem. 10, 225–235 (1963).
    Article CAS Google Scholar
  5. Whittaker, V.P., Michaelson, I.A. & Kirkland, R.J. The separation of synaptic vesicles from nerve-ending particles ('synaptosomes'). Biochem. J. 90, 293–303 (1964).
    Article CAS Google Scholar
  6. Whittaker, V.P. The synaptic vesicle. in Handbook of Neurochemistry, Vol. 7: Structural Elements of the Nervous System (ed. Lajtha, A.) Ch. 2, 41–69 (Plenum Press, 1984).
  7. Gray, E.G. & Whittaker, V.P. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96, 79–88 (1962).
    CAS PubMed PubMed Central Google Scholar
  8. Hell, J.W., Maycox, P.R., Stadler, H. & Jahn, R. Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J. 7, 3023–3029 (1988).
    Article CAS Google Scholar
  9. Park, Y. et al. Controlling synaptotagmin activity by electrostatic screening. Nat. Struct. Mol. Biol. 19, 991–997 (2012).
    Article CAS Google Scholar
  10. Nagy, A., Baker, R.R., Morris, S.J. & Whittaker, V.P. The preparation and characterization of synaptic vesicles of high purity. Brain Res. 109, 285–309 (1976).
    Article CAS Google Scholar
  11. Huttner, W.B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374–1388 (1983).
    Article CAS Google Scholar
  12. Hu, K. et al. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415, 646–650 (2002).
    Article CAS Google Scholar
  13. Burger, P.M. et al. Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate. Neuron 3, 715–720 (1989).
    Article CAS Google Scholar
  14. Jahn, R., Schiebler, W. & Greengard, P. A quantitative dot-immunobinding assay for proteins using nitrocellulose membrane filters. Proc. Natl. Acad. Sci. USA 81, 1684–1687 (1984).
    Article CAS Google Scholar
  15. Jahn, R., Schiebler, W., Ouimet, C. & Greengard, P. A 38,000-Dalton membrane protein (p38) present in synaptic vesicles. Proc. Natl. Acad. Sci. USA 82, 4137–4141 (1985).
    Article CAS Google Scholar
  16. Stadler, H. & Tsukita, S. Synaptic vesicles contain an ATP-dependent proton pump and show 'knob-like' protrusions on their surface. EMBO J. 3, 3333–3337 (1984).
    Article CAS Google Scholar
  17. Moriyama, Y. & Nelson, N. Cold inactivation of vacuolar proton-ATPases. J. Biol. Chem. 264, 3577–3582 (1989).
    CAS PubMed Google Scholar
  18. Holt, M., Riedel, D., Stein, A., Schuette, C. & Jahn, R. Synaptic vesicles are constitutively active fusion machines that function independently of Ca2+. Curr. Biol. 18, 715–722 (2008).
    Article CAS Google Scholar
  19. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, 1999).
  20. Takamori, S., Rhee, J.S., Rosenmund, C. & Jahn, R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194 (2000).
    Article CAS Google Scholar
  21. Takamori, S., Riedel, D. & Jahn, R. Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles. J. Neurosci. 20, 4904–4911 (2000).
    Article CAS Google Scholar
  22. Maycox, P.R., Deckwerth, T., Hell, J.W. & Jahn, R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J. Biol. Chem. 263, 15423–15428 (1988).
    CAS PubMed Google Scholar
  23. Chou, J.H. & Jahn, R. Binding of Rab3A to synaptic vesicles. J. Biol. Chem. 275, 9433–9440 (2000).
    Article CAS Google Scholar
  24. Perin, M.S., Brose, N., Jahn, R. & Südhof, T.C. Domain structure of synaptotagmin (p65). J. Biol. Chem. 266, 623–629 (1991).
    CAS PubMed Google Scholar
  25. Stenius, K., Janz, R., Südhof, T.C. & Jahn, R. Structure of synaptogyrin (p29) defines novel synaptic vesicle protein. J. Cell Biol. 131, 1801–1809 (1995).
    Article CAS Google Scholar
  26. Brose, N., Petrenko, A.G., Südhof, T.C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025 (1992).
    Article CAS Google Scholar
  27. Verrier, S.E. et al. Members of a mammalian SNARE complex interact in the endoplasmic reticulum in vivo and are found in COPI vesicles. Eur. J. Cell Biol. 87, 863–878 (2008).
    Article CAS Google Scholar
  28. Makarova, O.V., Makarov, E.M., Liu, S., Vornlocher, H.P. & Lührmann, R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 21, 1148–1157 (2002).
    Article CAS Google Scholar
  29. Barres, B.A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).
    Article CAS Google Scholar

Download references