Small-scale isolation of synaptic vesicles from mammalian brain (original) (raw)
References
Jahn, R. & Südhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem.68, 863–911 (1999). ArticleCAS Google Scholar
Morciano, M. et al. Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J. Neurochem.95, 1732–1745 (2005). ArticleCAS Google Scholar
Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell127, 831–846 (2006). ArticleCAS Google Scholar
De Robertis, E., Rodriguez De Lores Arnaiz, G., Salganicoff, L., Pellegrino De Iraldi, A. & Zieher, L.M. Isolation of synaptic vesicles and structural organization of the acetycholine system within brain nerve endings. J. Neurochem.10, 225–235 (1963). ArticleCAS Google Scholar
Whittaker, V.P., Michaelson, I.A. & Kirkland, R.J. The separation of synaptic vesicles from nerve-ending particles ('synaptosomes'). Biochem. J.90, 293–303 (1964). ArticleCAS Google Scholar
Whittaker, V.P. The synaptic vesicle. in Handbook of Neurochemistry, Vol. 7: Structural Elements of the Nervous System (ed. Lajtha, A.) Ch. 2, 41–69 (Plenum Press, 1984).
Gray, E.G. & Whittaker, V.P. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat.96, 79–88 (1962). CASPubMedPubMed Central Google Scholar
Hell, J.W., Maycox, P.R., Stadler, H. & Jahn, R. Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J.7, 3023–3029 (1988). ArticleCAS Google Scholar
Park, Y. et al. Controlling synaptotagmin activity by electrostatic screening. Nat. Struct. Mol. Biol.19, 991–997 (2012). ArticleCAS Google Scholar
Nagy, A., Baker, R.R., Morris, S.J. & Whittaker, V.P. The preparation and characterization of synaptic vesicles of high purity. Brain Res.109, 285–309 (1976). ArticleCAS Google Scholar
Huttner, W.B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol.96, 1374–1388 (1983). ArticleCAS Google Scholar
Hu, K. et al. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature415, 646–650 (2002). ArticleCAS Google Scholar
Burger, P.M. et al. Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate. Neuron3, 715–720 (1989). ArticleCAS Google Scholar
Jahn, R., Schiebler, W. & Greengard, P. A quantitative dot-immunobinding assay for proteins using nitrocellulose membrane filters. Proc. Natl. Acad. Sci. USA81, 1684–1687 (1984). ArticleCAS Google Scholar
Jahn, R., Schiebler, W., Ouimet, C. & Greengard, P. A 38,000-Dalton membrane protein (p38) present in synaptic vesicles. Proc. Natl. Acad. Sci. USA82, 4137–4141 (1985). ArticleCAS Google Scholar
Stadler, H. & Tsukita, S. Synaptic vesicles contain an ATP-dependent proton pump and show 'knob-like' protrusions on their surface. EMBO J.3, 3333–3337 (1984). ArticleCAS Google Scholar
Moriyama, Y. & Nelson, N. Cold inactivation of vacuolar proton-ATPases. J. Biol. Chem.264, 3577–3582 (1989). CASPubMed Google Scholar
Holt, M., Riedel, D., Stein, A., Schuette, C. & Jahn, R. Synaptic vesicles are constitutively active fusion machines that function independently of Ca2+. Curr. Biol.18, 715–722 (2008). ArticleCAS Google Scholar
Harlow, E. & Lane, D. Antibodies: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, 1999).
Takamori, S., Rhee, J.S., Rosenmund, C. & Jahn, R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature407, 189–194 (2000). ArticleCAS Google Scholar
Takamori, S., Riedel, D. & Jahn, R. Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles. J. Neurosci.20, 4904–4911 (2000). ArticleCAS Google Scholar
Maycox, P.R., Deckwerth, T., Hell, J.W. & Jahn, R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J. Biol. Chem.263, 15423–15428 (1988). CASPubMed Google Scholar
Chou, J.H. & Jahn, R. Binding of Rab3A to synaptic vesicles. J. Biol. Chem.275, 9433–9440 (2000). ArticleCAS Google Scholar
Perin, M.S., Brose, N., Jahn, R. & Südhof, T.C. Domain structure of synaptotagmin (p65). J. Biol. Chem.266, 623–629 (1991). CASPubMed Google Scholar
Stenius, K., Janz, R., Südhof, T.C. & Jahn, R. Structure of synaptogyrin (p29) defines novel synaptic vesicle protein. J. Cell Biol.131, 1801–1809 (1995). ArticleCAS Google Scholar
Brose, N., Petrenko, A.G., Südhof, T.C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science256, 1021–1025 (1992). ArticleCAS Google Scholar
Verrier, S.E. et al. Members of a mammalian SNARE complex interact in the endoplasmic reticulum in vivo and are found in COPI vesicles. Eur. J. Cell Biol.87, 863–878 (2008). ArticleCAS Google Scholar
Makarova, O.V., Makarov, E.M., Liu, S., Vornlocher, H.P. & Lührmann, R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing. EMBO J.21, 1148–1157 (2002). ArticleCAS Google Scholar
Barres, B.A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron60, 430–440 (2008). ArticleCAS Google Scholar