FACS purification of Drosophila larval neuroblasts for next-generation sequencing (original) (raw)
References
Chia, W., Somers, W.G. & Wang, H. Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization, and tumorigenesis. J. Cell Biol.180, 267–272 (2008). ArticleCAS Google Scholar
Doe, C.Q. Neural stem cells: balancing self-renewal with differentiation. Development135, 1575–1587 (2008). ArticleCAS Google Scholar
Homem, C.C. & Knoblich, J.A. Drosophila neuroblasts: a model for stem cell biology. Development139, 4297–4310 (2012). ArticleCAS Google Scholar
Bello, B.C., Izergina, N., Caussinus, E. & Reichert, H. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev.3, 5 (2008). Article Google Scholar
Boone, J.Q. & Doe, C.Q. Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev. Neurobiol.68, 1185–1195 (2008). Article Google Scholar
Bowman, S.K. et al. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev. Cell14, 535–546 (2008). ArticleCAS Google Scholar
Ito, K. & Hotta, Y. Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev. Biol.149, 134–148 (1992). ArticleCAS Google Scholar
Truman, J.W. & Bate, M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol.125, 145–157 (1988). ArticleCAS Google Scholar
Carney, T.D. et al. Functional genomics identifies neural stem cell sub-type expression profiles and genes regulating neuroblast homeostasis. Dev. Biol.361, 137–146 (2012). ArticleCAS Google Scholar
Wang, X., Starz-Gaiano, M., Bridges, T. & Montell,, D. Purification of specific cell populations from Drosophila tissues by magnetic bead sorting, for use in gene expression profiling. Protoc. Exchangehttp://www.nature.com/doifinder/10.1038/nprot.2008.28 (2008).
Cumberledge, S. & Krasnow, M.A. Preparation and analysis of pure cell populations from Drosophila. Methods Cell Biol.44, 143–159 (1994). ArticleCAS Google Scholar
Kai, T., Williams, D. & Spradling, A.C. The expression profile of purified Drosophila germline stem cells. Dev. Biol.283, 486–502 (2005). ArticleCAS Google Scholar
Tirouvanziam, R., Davidson, C.J., Lipsick, J.S. & Herzenberg, L.A. Fluorescence-activated cell sorting (FACS) of Drosophila hemocytes reveals important functional similarities to mammalian leukocytes. Proc. Natl. Acad. Sci. USA101, 2912–2917 (2004). ArticleCAS Google Scholar
de la Cruz, A.F. & Edgar, B.A. Flow cytometric analysis of Drosophila cells. Methods Mol. Biol.420, 373–389 (2008). ArticleCAS Google Scholar
Berger, C. et al. FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role for Klumpfuss in self-renewal. Cell Rep.2, 407–418 (2012). ArticleCAS Google Scholar
Goulas, S., Conder, R. & Knoblich, J.A. The par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell11, 529–540 (2012). ArticleCAS Google Scholar
McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K. & Davis, R.L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science302, 1765–1768 (2003). ArticleCAS Google Scholar
McGuire, S.E., Mao, Z. & Davis, R.L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE2004, pl6 (2004). Google Scholar
Fristrom, J.W. & Mitchell, H.K. The preparative isolation of imaginal discs from larvae of Drosophila melanogaster. J. Cell Biol.27, 445–448 (1965). ArticleCAS Google Scholar
Zweidler, A. & Cohen, L.H. Large-scale isolation and fractionation of organs of Drosophila melanogaster larvae. J. Cell Biol.51, 240–248 (1971). ArticleCAS Google Scholar
Zhu, S. et al. Gradients of the Drosophila chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell127, 409–422 (2006). ArticleCAS Google Scholar
Neumuller, R.A. et al. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell8, 580–593 (2011). Article Google Scholar
Zhu, S., Barshow, S., Wildonger, J., Jan, L.Y. & Jan, Y.N. Ets transcription factor pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proc. Natl. Acad. Sci. USA108, 20615–20620 (2011). ArticleCAS Google Scholar
Barolo, S., Carver, L.A. & Posakony, J.W. GFP and -galactosidase transformation vectors for promoter/enhancer analysis in Drosophila. Biotechniques29, 726, 728, 730, 732 (2000). ArticleCAS Google Scholar
Ceron, J., Tejedor, F.J. & Moya, F. A primary cell culture of Drosophila postembryonic larval neuroblasts to study cell cycle and asymmetric division. Eur. J. Cell Biol.85, 567–575 (2006). ArticleCAS Google Scholar
Winnebeck, E.C., Millar, C.D. & Warman, G.R. Why does insect RNA look degraded? J. Insect Sci.10, 159 (2010). Article Google Scholar