Synthesis of the Pitstop family of clathrin inhibitors (original) (raw)
Brodsky, F.M. Diversity of clathrin function: new tricks for an old protein. Ann. Rev. Cell Dev. Biol.28, 309–336 (2012). CAS Google Scholar
McMahon, H.T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol.12, 517–533 (2012). Google Scholar
Wieffer, M., Maritzen;, T. & Haucke, V. SnapShot: endocytic trafficking. Cell137, 382 e1-382.e3 (2009). CASPubMed Google Scholar
Owen, D.J., Collins, B.M. & Evans, P.R. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol.20, 153–191 (2004). CASPubMed Google Scholar
ter Haar, E., Harrison, S.C. & Kirchhausen, T. Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc. Natl. Acad. Sci. USA97, 960–962 (2000). Google Scholar
Kang, D.S. et al. Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. J. Biol. Chem.284, 29860–29872 (2009). CASPubMedPubMed Central Google Scholar
Willox, A.K. & Royle, S.J. Functional analysis of interaction sites on the N-terminal domain of clathrin heavy chain. Traffic13, 70–81 (2012). CASPubMed Google Scholar
Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell150, 495–507 (2012). CASPubMedPubMed Central Google Scholar
Reider, A. et al. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J.28, 3103–3116 (2009). CASPubMedPubMed Central Google Scholar
Traub, L.M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol.10, 583–596 (2009). CASPubMed Google Scholar
Edeling, M.A. et al. Molecular switches involving the AP-2 β2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell10, 329–342 (2006). CASPubMed Google Scholar
Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol.7, e1000191 (2009). PubMedPubMed Central Google Scholar
Wigge, P. et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell8, 2003–2015 (1997). CASPubMedPubMed Central Google Scholar
Ferguson, S. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell17, 811–822 (2009). CASPubMedPubMed Central Google Scholar
Sundborger, A. et al. An endophilin-dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling. J. Cell Sci.124, 133–143 (2011). CASPubMed Google Scholar
Harper, C.B., Popoff, M.R., McCluskey, A., Robinson, P.J. & Meunier, F.A. Targeting membrane trafficking in infection prophylaxis: dynamin inhibitors. Trends Cell Biol.23, 90–101 (2012). PubMed Google Scholar
Daecke, J., Fackler, O.T., Dittmar, M.T. & Kraeusslich, H.-G. Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J. Virol.79, 1581–1594 (2005). CASPubMedPubMed Central Google Scholar
Miyauchi, K., Kim, Y., Latinovic, O., Morozov, V. & Melikyan, G.B. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell137, 433–444 (2009). CASPubMedPubMed Central Google Scholar
Cheng, C.Y. et al. Bovine ephemeral fever virus uses a clathrin-mediated and dynamin 2-dependent endocytosis pathway that requires Rab5 and Rab7 as well as microtubules. J. Virol.86, 13653–13661 (2012). CASPubMedPubMed Central Google Scholar
Bhattacharyya, S. et al. Ebola virus uses clathrin-mediated endocytosis as an entry pathway. Virology401, 18–28 (2010). CASPubMed Google Scholar
Simon, M., Johansson, C. & Mirazimi, A. Crimean-Congo hemorrhagic fever virus entry and replication is clathrin-, pH- and cholesterol-dependent. J. Gen. Virol.90, 210–215 (2009). CASPubMed Google Scholar
Garrison, A.R. et al. Crimean-Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathway. Virology444, 45–54 (2013). CASPubMed Google Scholar
Martinez, M.G., Cordo, S.M. & Candurra, N.A. Characterization of Junin arenavirus cell entry. J. Gen. Virol.88, 1776–1784 (2007). CASPubMed Google Scholar
Veiga, E. et al. Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe2, 340–351 (2007). CASPubMedPubMed Central Google Scholar
Blanchard, E. et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol.80, 6964–6972 (2006). CASPubMedPubMed Central Google Scholar
Okamoto, C.T., McKinney, J. & Jeng, Y.Y. Clathrin in mitotic spindles. Am. J. Physiol.279, C369–C374 (2000). CAS Google Scholar
Royle, S.J., Bright, N.A. & Lagnado, L. Clathrin is required for the function of the mitotic spindle. Nature434, 1152–1157 (2005). CASPubMedPubMed Central Google Scholar
Royle, S.J. The role of clathrin in mitotic spindle organization. J. Cell Sci.125, 19–28 (2012). CASPubMed Google Scholar
Radulescu, A.E., Siddhanta, A. & Shields, D. A role for clathrin in reassembly of the Golgi apparatus. Mol. Biol. Cell18, 94–105 (2006). PubMed Google Scholar
Lin, C.-H., Hu, C.-K. & Shih, H.-M. Clathrin heavy chain mediates TACC3 targeting to mitotic spindles to ensure spindle stability. J. Cell Biol.189, 1097–1105 (2010). CASPubMedPubMed Central Google Scholar
Royle, S.J. & Lagnado, L. Trimerisation is important for the function of clathrin at the mitotic spindle. J. Cell Sci.119, 4071–4078 (2006). CASPubMed Google Scholar
Sasai, K. et al. Targeted disruption of aurora A causes abnormal mitotic spindle assembly, chromosome misalignment and embryonic lethality. Oncogene27, 4122–4127 (2008). CASPubMed Google Scholar
von Kleist, L. et al. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell146, 471–484 (2011). CASPubMed Google Scholar
Baell, J.B. & Holloway, G.A. New substructure filters for removal of pan-assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem.53, 2719–2740 (2010). CASPubMed Google Scholar
Bunnage, M.E., Chekler, E.L.P. & Jones, L.H. Target validation using chemical probes. Nat. Chem. Biol.9, 195–199 (2013). CASPubMed Google Scholar
Robertson, M.J. et al. The rhodadyns, a new class of small molecule inhibitors of dynamin GTPase activity. Med. Chem. Lett.3, 352–356 (2012). CAS Google Scholar
Smith, C., Haucke, V., McCluskey, A., Robinson, P. & Chircop, M. Inhibition of clathrin by Pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells. Mol. Cancer12, 4 (2013). CASPubMedPubMed Central Google Scholar
Dutta, D., Williamson, C.D., Cole, N.B. & Donaldson, J.G. Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. Plos ONE7, e45799 (2012). CASPubMedPubMed Central Google Scholar
Stahlschmidt, W., Robertson, M.J., Robinson, P.J., McCluskey, A. & Haucke, V. Clathrin terminal domain-ligand interactions regulate sorting of mannose 6-phosphate receptors mediated by AP-1 and GGA adaptors. J. Biol. Chem.289, 4906–4918 (2014). CASPubMedPubMed Central Google Scholar
Goto, E. et al. Contribution of lysine 11-linked ubiquitination to MIR2-mediated major histocompatibility complex class I internalization. J. Biol. Chem.285, 35311–35319 (2010). CASPubMedPubMed Central Google Scholar
Larsen, J.E., Massol, R.H., Nieland, T.J.F. & Kirchhausen, T. HIV nef-mediated major histocompatibility complex class I down-modulation is independent of Arf6 activity. Mol. Biol. Cell15, 323–331 (2004). CASPubMedPubMed Central Google Scholar
Jaśkowska, J. & Kowalski, P. N-Alkylation of imides using phase transfer catalysts under solvent-free conditions. J. Heterocycl. Chem.45, 1371–1375 (2008). Google Scholar
Triboni, E.R., Filho, P.B., Berlinck, R.G.d.S. & Politi, M.J. Efficient sonochemical synthesis of 3- and 4-electron withdrawing ring substituted _N_-alkyl-1,8-naphthalimides from the related anhydrides. Synth. Commun.34, 1989–1999 (2004). CAS Google Scholar
MacGregor, K.A. & McCluskey, A. Ionic liquids accelerate access to N-substituted-1,8-naphthalimides. Tetrahedron Lett.52, 767–769 (2011). CAS Google Scholar
MacGregor, K.A. et al. Development of 1,8-naphthalimides as clathrin inhibitors. J. Med. Chem.57, 131–143 (2013). PubMed Google Scholar
Subtel'na, I. et al. Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity. Bioorg. Med.. Chem.18, 5090–5102 (2010). CASPubMed Google Scholar
Chen, S. et al. Synthesis and activity of quinolinyl-methylene-thiazolinones as potent and selective cyclin-dependent kinase 1 inhibitors. Bioorg. Med. Chem. Lett.17, 2134–2138 (2007). CASPubMed Google Scholar
Anderluh, M., Jukic, M. & Petric, R. Three-component one-pot synthetic route to 2-amino-5-alkylidene-thiazol-4-ones. Tetrahedron65, 344–350 (2009). CAS Google Scholar
Merriam, L.A. et al. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability. J. Neurosci.33, 4614–4622 (2013). CASPubMedPubMed Central Google Scholar
Wu, J.W. et al. Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem.288, 1856–1870 (2013). CASPubMed Google Scholar
Mishra, S.K., Funair, L., Cressley, A., Gittes, G.K. & Burns, R.C. High-affinity Dkk1 receptor kremen1 is internalized by clathrin-mediated endocytosis. PLoS ONE7, e52190 (2012). CASPubMedPubMed Central Google Scholar
Ares, G.R. & Ortiz, P.A. Dynamin2, clathrin, and lipid rafts mediate endocytosis of the apical Na/K/2Cl cotransporter NKCC2 in thick ascending limbs. J. Biol. Chem.287, 37824–37834 (2012). CASPubMedPubMed Central Google Scholar
Tkachenko, E. et al. Caveolae, fenestrae and transendothelial channels retain PV1 on the surface of endothelial cells. PLoS ONE7, e32655 (2012). CASPubMedPubMed Central Google Scholar
Declercq, J., Meulemans, S., Plets, E. & Creemers, J.W.M. Internalization of proprotein convertase PC7 from plasma membrane is mediated by a novel motif. J. Biol. Chem.287, 9052–9060 (2012). CASPubMedPubMed Central Google Scholar