The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals (original) (raw)
References
Pedrique, B. et al. The drug and vaccine landscape for neglected diseases (2010-2011): a systematic assessment. Lancet Glob. Health1, e371–e379 (2013). Article Google Scholar
Moran, M. et al. Neglected disease research and development: how much are we really spending? PLoS Med.6, e1000030 (2009). Article Google Scholar
Bergquist, R., Johansen, M.V. & Utzinger, J. Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol.25, 151–156 (2009). Article Google Scholar
Cringoli, G., Rinaldi, L., Maurelli, M.P. & Utzinger, J. FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nat. Protoc.5, 503–515 (2010). ArticleCAS Google Scholar
Utzinger, J., Becker, S.L., van Lieshout, L., van Dam, G.J. & Knopp, S. New diagnostic tools in schistosomiasis. Clin. Microbiol. Infect.21, 529–542 (2015). ArticleCAS Google Scholar
Knopp, S. et al. A single FLOTAC is more sensitive than triplicate Kato-Katz for the diagnosis of low-intensity soil-transmitted helminth infections. Trans. R. Soc. Trop. Med. Hyg.103, 347–354 (2009). Article Google Scholar
El-Abdellati, A. et al. The use of a simplified faecal egg count reduction test for assessing anthelmintic efficacy on Belgian and German cattle farms. Vet. Parasitol.169, 352–357 (2010). ArticleCAS Google Scholar
Becker, S.L. et al. Comparison of the Flotac-400 dual technique and the formalin-ether concentration technique for diagnosis of human intestinal protozoon infection. J. Clin. Microbiol.49, 2183–2190 (2011). Article Google Scholar
Levecke, B. et al. Monitoring drug efficacy against gastrointestinal nematodes when faecal egg counts are low: do the analytic sensitivity and the formula matter? Parasitol. Res.109, 953–957 (2011). Article Google Scholar
Albonico, M. et al. Comparison of three copromicroscopic methods to assess albendazole efficacy against soil-transmitted helminth infections in school-aged children on Pemba Island. Trans. R. Soc. Trop. Med. Hyg.107, 493–501 (2013). ArticleCAS Google Scholar
Bogoch, I.I., Raso, G., N'Goran, E.K., Marti, H.P. & Utzinger, J. Differences in microscopic diagnosis of helminths and intestinal protozoa among diagnostic centres. Eur. J. Clin. Microbiol. Infect. Dis.25, 344–347 (2006). ArticleCAS Google Scholar
Levecke, B. et al. A comparison of the sensitivity and fecal egg counts of the McMaster egg counting and Kato-Katz thick smear methods for soil-transmitted helminths. PLoS Negl. Trop. Dis.5, e1201 (2011). Article Google Scholar
Becker, S.L. et al. Experiences and lessons from a multi-country NIDIAG study on persistent digestive disorders in the tropics. PLoS Negl. Trop.Dis10, e0004818 (2016). Article Google Scholar
Fisheries and Food Reference Book: Manual of Veterinary Parasitological Laboratory Techniques, Vol. 418, Ministry of Agriculture, Fisheries and Food, HMSO, London (1986).
Katz, N., Chaves, A. & Pellegrino, J. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev. Inst. Med. Trop. São Paulo14, 397–400 (1972). CASPubMed Google Scholar
Yap, P. et al. Determining soil-transmitted helminth infection status and physical fitness of school-aged children. J. Vis. Exp.66, e3966 (2012). Google Scholar
Allen, A.V.H. & Ridley, D.S. Further observations on the formol-ether concentration technique for faecal parasites. J. Clin. Pathol.23, 545–546 (1970). ArticleCAS Google Scholar
Utzinger, J. et al. Microscopic diagnosis of sodium acetate-acetic acid-formalin-fixed stool samples for helminths and intestinal protozoa: a comparison among European reference laboratories. Clin. Microbiol. Infect.16, 267–273 (2010). ArticleCAS Google Scholar
Cringoli, G. Coprological diagnosis: what's new? Parassitologia46, 137–139 (2004). CASPubMed Google Scholar
Cringoli, G., Rinaldi, L., Albonico, M., Bergquist, R. & Utzinger, J. Geospatial (s)tools: integration of advanced epidemiological sampling and novel diagnostics. Geospat. Health7, 399–404 (2013). Article Google Scholar
Borrelli, L. et al. New diagnostic insights for Macrorhabdus ornithogaster infection. J. Clin. Microbiol.3, 3448–3350 (2015). Article Google Scholar
Barda, B. et al. Mini-FLOTAC, an innovative direct diagnostic technique for intestinal parasitic infections: experience from the field. PLoS Negl. Trop. Dis.7, e2344 (2013). Article Google Scholar
Barda, B. et al. Parasitic infections on the shore of Lake Victoria (East Africa) detected by Mini-FLOTAC and standard techniques. Acta Trop.137, 140–146 (2014). Article Google Scholar
Kenyon, F. et al. Pooling sheep faecal samples for the assessment of gastrointestinal strongyle and Nematodirus infection intensity and anthelmintic drug efficacy using McMaster and Mini-FLOTAC. Vet. Parasitol.225, 53–60 (2016). ArticleCAS Google Scholar
King, J.D. et al. Intestinal parasite prevalence in an area of Ethiopia after implementing the SAFE strategy, enhanced outreach services, and health extension program. PLoS Negl. Trop. Dis.7, e2223 (2013). Article Google Scholar
Maurelli, M.P. et al. FLOTAC and Mini-FLOTAC for uro-microscopic diagnosis of Capillaria plica (syn. Pearsonema plica) in dogs. BMC Res. Notes7, 591 (2014). Article Google Scholar
Kochanowski, M., Karamon, J., Dąbrowska, J. & Cencek, T. Experimental estimation of the efficacy of the FLOTAC basic technique. J. Parasitol.100, 633–639 (2014). Article Google Scholar
Ruzicova, M., Petrzelkova, K., Kalousova, B., Modry, D. & Pomajbìkovà, K. Validation of FLOTAC for the detection and quantification of Troglodytella abrassarti and Neobalantidium coli in chimpanzees and pigs. J. Parasitol.100, 662–670 (2014). ArticleCAS Google Scholar
Noel, M.L., Scare, J.A., Bellaw, J.L. & Nielsen, M.K. Accuracy and precision of Mini-FLOTAC and McMaster techniques for determining equine strongyle egg counts. J. Equin. Vet. Sci.48, 182–187e1 (2017). Article Google Scholar
Bosco, A. et al. Mini-FLOTAC, an accurate method for the diagnosis of nematode infections in horses and sheep. Proceedings of the XXIX Congress of the Italian Society of Parasitology (SOIPA) Bari, Italy, June 21–24, p. 32 (2016).
Van den Putte, N., Claerebout, E. & Levecke, B. Evaluation of the Mini-FLOTAC technique for detection of gastro-intestinal parasites in large companion animals. Vlams Diergeneskd. Tijdschr.85, 15–22 (2016). Google Scholar
Maurelli, M.P. et al. Mini-FLOTAC, a new tool for copromicroscopic diagnosis of common intestinal nematodes in dogs. Parasit. Vectors7, 356 (2014). Article Google Scholar
Torgerson, P.R., Paul, M. & Lewis, F.I. The contribution of simple random sampling to observed variations in faecal egg counts. Vet. Parasitol.188, 397–401 (2012). Article Google Scholar
Engels, D., Nahimana, S., de Vlas, S.J. & Gryseels, B. Variation in weight of stool samples prepared by the Kato-Katz method and its implications. Trop. Med. Int. Health.2, 265–271 (1997). ArticleCAS Google Scholar
Krauth, S.J. et al. An in-depth analysis of a piece of shit: distribution of Schistosoma mansoni and hookworm eggs in human stool. PLoS Negl. Trop. Dis.6, e1969 (2012). Article Google Scholar
Levecke, B. et al. Mathematical inference on helminth egg counts in stool and its applications in mass drug administration programmes to control soil-transmitted helminthiasis in public health. Adv. Parasitol.87, 193–247 (2015). Article Google Scholar
Rinaldi, L. et al. Comparison of individual and pooled faecal samples in sheep for the assessment of gastrointestinal strongyle infection intensity and anthelmintic drug efficacy using McMaster and Mini-FLOTAC. Vet. Parasitol.205, 216–223 (2014). ArticleCAS Google Scholar
Mekonnen, Z. et al. Comparison of individual and pooled stool samples for the assessment of soil-transmitted helminth infection intensity and drug efficacy. PLoS Negl. Trop. Dis.7, e2189 (2013). ArticleCAS Google Scholar
Kure, A. et al. Comparison of individual and pooled stool samples for the assessment of intensity of Schistosoma mansoni and soil-transmitted helminth infections using the Kato-Katz technique. Parasit. Vectors8, 489 (2015). Article Google Scholar
Degarege, A. et al. Comparison of individual and pooled urine samples for estimating the presence and intensity of Schistosoma haematobium infections at the population level. Parasit. Vectors8, 593 (2015). Article Google Scholar
Lo, N.C. et al. Evaluation of a urine pooling strategy for the rapid and cost-efficient prevalence classification of schistosomiasis. PLoS Negl. Trop. Dis.10, e0004894 (2016). Article Google Scholar
Barda, B. et al. How long can stool samples be fixed for an accurate diagnosis of soil-transmitted helminth infection using Mini-FLOTAC? PLoS Negl. Trop. Dis.9, e0003698 (2015). Article Google Scholar
Rinaldi, L., Coles, G.C., Maurelli, M.P., Musella,, V. & Cringoli, G. Calibration and diagnostic accuracy of simple flotation, McMaster and FLOTAC for parasite egg counts in sheep. Vet. Parasitol.177, 345–352 (2011). ArticleCAS Google Scholar
Barda, B. et al. Mini-FLOTAC and Kato-Katz: helminth eggs watching on the shore of Lake Victoria. Parasit. Vectors6, 220 (2013). Article Google Scholar
Barda, B. et al. “Freezing” parasites in pre-Himalayan region, Himachal Pradesh: experience with Mini-FLOTAC. Acta Trop.130, 11–16 (2013). Article Google Scholar
Barda, B. et al. Mini-FLOTAC, Kato-Katz and McMaster: three methods, one goal; highlights from north Argentina. Parasit. Vectors7, 271 (2014). Article Google Scholar
Lima, V.F. et al. A comparison of Mini-FLOTAC and FLOTAC with classic methods to diagnosing intestinal parasites of dogs from Brazil. Parasitol. Res.114, 3529–3533 (2015). Article Google Scholar
Djokic, V. et al. Mini-FLOTAC for counting Toxoplasma gondii oocysts from cat faeces-comparison with cell counting plates. Exp. Parasitol.14, 67–71 (2014). Article Google Scholar
Silva, L.M.R. et al. Mini-FLOTAC for the diagnosis of Eimeria infection in goats: an alternative to McMaster. Small Rum. Res.114, 280–283 (2013). Article Google Scholar
Godber, O.F. et al. A comparison of the FECPAK and Mini-FLOTAC faecal egg counting techniques. Vet. Parasitol.207, 342–345 (2015). Article Google Scholar
Assefa, L.M. et al. Diagnostic accuracy and cost-effectiveness of alternative methods for detection of soil-transmitted helminths in a post-treatment setting in western Kenya. PLoS Negl. Trop. Dis.8, e2843 (2014). Article Google Scholar
Nikolay, B., Brooker, S.J. & Pullan, R.L. Sensitivity of diagnostic tests for human soil-transmitted helminth infections: a meta-analysis in the absence of a true gold standard. Int. J. Parasitol.44, 765–774 (2014). Article Google Scholar
Smith, J.L. et al. Factors associated with the performance and cost-effectiveness of using lymphatic filariasis transmission assessment surveys for monitoring soil-transmitted helminths: a case study in Kenya. Am. J. Trop. Med. Hyg.92, 342–353 (2015). Article Google Scholar
Benjamin-Chung, J. et al. The interaction of deworming, improved sanitation, and household flooring with soil-transmitted helminth infection in rural Bangladesh. PLoS Negl. Trop. Dis.9, e0004256 (2015). Article Google Scholar
Malrait, K. et al. Novel insights into the pathogenic importance, diagnosis and treatment of the rumen fluke (Calicophoron daubneyi) in cattle. Vet. Parasitol.207, 134–139 (2015). Article Google Scholar
Donoghue, E.M., Lyons, E.T., Bellaw, J.L. & Nielsen, M.K. Biphasic appearance of corticated and decorticated ascarid egg shedding in untreated horse foals. Vet. Parasitol.214, 114–117 (2015). ArticleCAS Google Scholar
Lamberton, P.H. & Jourdan, P.M. Human ascariasis: diagnostics update. Curr. Trop. Med. Rep.2, 189–200 (2015). Article Google Scholar