Neuroblastoma: biological insights into a clinical enigma (original) (raw)
Knudson, A. G. J. & Strong, L. C. Mutation and cancer: neuroblastoma and pheochromocytoma. Am. J. Hum. Genet.24, 514–522 (1972). PubMedPubMed Central Google Scholar
Kushner, B. H., Gilbert, F. & Helson, L. Familial neuroblastoma: case reports, literature review, and etiologic considerations. Cancer57, 1887–1893 (1986). ArticleCASPubMed Google Scholar
Maris, J. M. & Matthay, K. K. Molecular biology of neuroblastoma. J. Clin. Oncol.17, 2264–2279 (1999). ArticleCASPubMed Google Scholar
Kushner, B. H. & Helson, L. Monozygotic siblings discordant for neuroblastoma: etiologic implications. J. Pediatr.107, 405–409 (1985). ArticleCASPubMed Google Scholar
Kushner, B. H., Hajdu, S. I. & Helson, L. Synchronous neuroblastoma and von Recklinghausen's disease: a review of the literature. J. Clin. Oncol.3, 117–120 (1985). ArticleCASPubMed Google Scholar
Maris, J. M. et al. Familial predisposition to neuroblastoma does not map to chromosome band 1p36. Cancer Res.56, 3421–3425 (1996). CASPubMed Google Scholar
Weiss, M. J. et al. Localization of a hereditary neuroblastoma predisposition gene to 16p12-p13. Med. Pediatr. Oncol.35, 526–530 (2000). ArticleCASPubMed Google Scholar
Bown, N. P., Pearson, A. D. J. & Reid, M. M. High incidence of constitutional balanced translocations in neuroblastoma. Cancer Genet. Cytogenet.69, 166–167 (1993). ArticleCASPubMed Google Scholar
Biegel, J. A. et al. Constitutional 1p36 deletion in a child with neuroblastoma. Am. J. Hum. Genet.52, 176–182 (1993). CASPubMedPubMed Central Google Scholar
Laureys, G. et al. Constitutional translocation t(1;17)(p36.31-p36.13;q11.2-q12.1) in a neuroblastoma patient. Establishment of somatic cell hybrids and identification of PND/A12M2 on chromosome 1 and NF1/SCYA7 on chromosome 17 as breakpoint flanking single copy markers. Oncogene10, 1087–1093 (1995). CASPubMed Google Scholar
White, P. S. et al. Detailed molecular analysis of 1p36 in neuroblastoma. Med. Pediatr. Oncol.36, 37–41 (2001). ArticleCASPubMed Google Scholar
Maris, J. M. et al. Evidence for a hereditary neuroblastoma predisposition locus at chromosome 16p12-13. Cancer Res.62, 6651–6658 (2002). The first report of linkage analysis, identifying a candidate locus on 16p12-13. CASPubMed Google Scholar
Kaneko, Y. et al. Different karyotypic patterns in early and advanced stage neuroblastomas. Cancer Res.47, 311–318 (1987). The first report to associate karyotypic pattern with stage and prognosis, and the first to show the association of near-triploid tumours in infants with whole chromosome gains. CASPubMed Google Scholar
Kaneko, Y. et al. Current urinary mass screening or catecholamine metabolites at 6 months of age may be detecting only a small portion of high-risk neuroblastomas: a chromosome and N-myc amplification study. J. Clin. Oncol.8, 2005–2013 (1990). ArticleCASPubMed Google Scholar
Look, A. T., Hayes, F. A., Nitschke, R., McWilliams, N. B. & Green, A. A. Cellular DNA content as a predictor of response to chemotherapy in infants with unresectable neuroblastoma. N. Engl. J. Med.311, 231–235 (1984). The first report to show the prognostic significance of tumour-cell DNA content in infants with neuroblastoma. ArticleCASPubMed Google Scholar
Look, A. T. et al. Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma. A Pediatric Oncology Group Study. J. Clin. Oncol.9, 581–591 (1991). ArticleCASPubMed Google Scholar
Kaneko, Y. & Knudson, A. G. Mechanism and relevance of ploidy in neuroblastoma. Genes Chromosom. Cancer29, 89–95 (2000). ArticleCASPubMed Google Scholar
Schwab, M. et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature305, 245–248 (1983). Reports the cloning of theMYCNproto-oncogene as the gene amplified in neuroblastoma cell lines and a primary tumour. ArticleCASPubMed Google Scholar
Schwab, M. et al. Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature308, 288–291 (1984). ArticleCASPubMed Google Scholar
Corvi, R., Amler, L. C., Savelyeva, L., Gehring, M. & Schwab, M. MYCN is retained in single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells. Proc. Natl Acad. Sci. USA91, 5523–5527 (1994). ArticleCASPubMed Google Scholar
Schneider, S. S. et al. Isolation and structural analysis of a 1.2-megabase N-myc amplicon from a human neuroblastoma. Mol. Cell. Biol.12, 5563–5570 (1992). ArticleCASPubMedPubMed Central Google Scholar
Brodeur, G. M. & Fong, C. T. Molecular biology and genetics of human neuroblastoma. Cancer Genet. Cytogenet.41, 153–174 (1989). ArticleCASPubMed Google Scholar
Reiter, J. L. & Brodeur, G. M. High-resolution mapping of a 130-kb core region of the MYCN amplicon in neuroblastomas. Genomics32, 97–103 (1996). ArticleCASPubMed Google Scholar
Reiter, J. L. & Brodeur, G. M. MYCN is the only highly expressed gene from the core amplified domain in human neuroblastomas. Genes Chromosom. Cancer23, 134–140 (1998). ArticleCASPubMed Google Scholar
Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science224, 1121–1124 (1984). Amplification of theMYCNoncogene is strongly associated with advanced stages of disease in neuroblastoma. ArticleCASPubMed Google Scholar
Seeger, R. C. et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med.313, 1111–1116 (1985). The first report to show the adverse prognostic significance ofMYCNamplification in neuroblastoma patients. ArticleCASPubMed Google Scholar
Brodeur, G. M., Maris, J. M., Yamashiro, D. J., Hogarty, M. D. & White, P. S. Biology and genetics of human neuroblastomas. J. Pediatr. Hematol. Oncol.19, 93–101 (1997). ArticleCASPubMed Google Scholar
Brodeur, G. M. & Ambros, P. F. in Neuroblastoma (eds Brodeur, G. M., Sawada, T., Tsuchida, Y. & Voûte, P. A.) 355–369 (Elsevier Science B. V., Amsterdam, 2000). Google Scholar
Brodeur, G. M. & Maris, J. M. in Principles and Practice of Pediatric Oncology (eds Pizzo, P. & Poplack, D.) 895–937 (2002). Google Scholar
Brodeur, G. M. in The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 751–772 (McGraw–Hill, Inc., New York, 2002). Google Scholar
Brodeur, G. M. et al. Consistent N-myc copy number in simultaneous or consecutive neuroblastoma samples from sixty individual patients. Cancer Res.47, 4248–4253 (1987). CASPubMed Google Scholar
Seeger, R. C. et al. Expression of N-myc by neuroblastomas with one or multiple copies of the oncogene. Prog. Clin. Biol. Res.271, 41–49 (1988). CASPubMed Google Scholar
Norris, M. D. et al. Evidence that the MYCN oncogene regulates MRP gene expression in neuroblastoma. Eur. J. Cancer33, 1911–1916 (1997). ArticleCASPubMed Google Scholar
Shohet, J. M. et al. Minichromosome maintenance protein MCM7 is a direct target of the MYCN transcription factor in neuroblastoma. Cancer Res.62, 1123–1128 (2002). CASPubMed Google Scholar
Nakagawara, A., Arima, M., Azar, C. G., Scavarda, N. J. & Brodeur, G. M. Inverse relationship between TRK expression and N-MYC amplification in human neuroblastomas. Cancer Res.52, 1364–1368 (1992). CASPubMed Google Scholar
Wada, R. K. et al. Human neuroblastoma cell lines that express N-myc without gene amplification. Cancer72, 3346–3354 (1993). ArticleCASPubMed Google Scholar
Cohn, S. L. et al. High levels of N-myc protein in a neuroblastoma cell line lacking N-myc amplification. Prog. Clin. Biol. Res.366, 21–27 (1991). CASPubMed Google Scholar
Sivak, L. E. et al. Autoregulation of the human N-myc oncogene is disrupted in amplified but not single-copy neuroblastoma cell lines. Oncogene15, 1937–1946 (1997). ArticleCASPubMed Google Scholar
Chan, H. S. et al. MYCN protein expression as a predictor of neuroblastoma prognosis. Clin. Cancer Res.3, 1699–1706 (1997). CASPubMed Google Scholar
Bordow, S. B., Norris, M. D., Haber, P. S., Marshall, G. M. & Haber, M. Prognostic significance of MYCN oncogene expression in childhood neuroblastoma. J. Clin. Oncol.16, 3286–3294 (1998). ArticleCASPubMed Google Scholar
Cohn, S. L. et al. MYCN expression is not prognostic of adverse outcome in advanced-stage neuroblastoma with nonamplified MYCN. J. Clin. Oncol.18, 3604–3613 (2000). ArticleCASPubMed Google Scholar
Fong, C. T. et al. Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with N-myc amplification. Proc. Natl Acad. Sci. USA86, 3753–3757 (1989). ArticleCASPubMed Google Scholar
Gehring, M., Berthold, F., Edler, L., Schwab, M. & Amler, L. C. The 1p deletion is not a reliable marker for the prognosis of patients with neuroblastoma. Cancer Res.55, 5366–5369 (1995). CASPubMed Google Scholar
Caron, H. et al. Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N. Engl. J. Med.334, 225–230 (1996). ArticleCASPubMed Google Scholar
Maris, J. M. et al. Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a Children's Cancer Group study. J. Clin. Oncol.18, 1888–1899 (2000). ArticleCASPubMed Google Scholar
Jinbo, T., Iwamura, Y., Kaneko, M. & Sawaguchi, S. Coamplification of the L-myc and N-myc oncogenes in a neuroblastoma cell line. Jpn. J. Cancer Res.80, 299–301 (1989). ArticleCASPubMedPubMed Central Google Scholar
Corvi, R. et al. Non-syntenic amplification of MDM2 and MYCN in human neuroblastoma. Oncogene10, 1081–1086 (1995). CASPubMed Google Scholar
Van Roy, N. et al. Identification of two distinct chromosome 12-derived amplification units in neuroblastoma cell line NGP. Cancer Genet. Cytogenet.82, 151–154 (1995). ArticleCASPubMed Google Scholar
Brinkschmidt, C. et al. Comparative genomic hybridization (CGH) analysis of neuroblastomas — an important methodological approach in paediatric tumour pathology. J. Pathol.181, 394–400 (1997). ArticleCASPubMed Google Scholar
Lastowska, M. et al. Comparative genomic hybridization study of primary neuroblastoma tumors. United Kingdom Children's Cancer Study Group. Genes Chromosom. Cancer18, 162–169 (1997). ArticleCASPubMed Google Scholar
Vandesompele, J. et al. Genetic heterogeneity of neuroblastoma studied by comparative genomic hybridization. Genes Chromosom. Cancer23, 141–152 (1998). ArticleCASPubMed Google Scholar
Caron, H. Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med. Pediatr. Oncol.24, 215–221 (1995). ArticleCASPubMed Google Scholar
Bown, N. et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N. Engl. J. Med.340, 1954–1961 (1999). Definitive report of the prevalence and clinical significance of unbalanced 17q gain in neuroblastomas. ArticleCASPubMed Google Scholar
Van Roy, N. et al. Analysis of 1;17 translocation breakpoints in neuroblastoma: implications for mapping of neuroblastoma genes. Eur. J. Cancer33, 1974–1978 (1997). ArticleCASPubMed Google Scholar
Lastowska, M. et al. Breakpoint position on 17q identifies the most aggressive neuroblastoma tumors. Genes Chromosom. Cancer34, 428–436 (2002). ArticleCASPubMed Google Scholar
Islam, A. et al. High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene19, 617–623 (2000). ArticleCASPubMed Google Scholar
Ireland, C. M. Activated N-ras oncogenes in human neuroblastoma. Cancer Res.49, 5530–5533 (1989). CASPubMed Google Scholar
Moley, J. F. et al. Low frequency of ras gene mutations in neuroblastomas, pheochromocytomas and medullary thyroid cancers. Cancer Res.51, 1596–1599 (1991). CASPubMed Google Scholar
Tanaka, T. et al. Expression of Ha-ras oncogene products in human neuroblastomas and the significant correlation with a patient's prognosis. Cancer Res.48, 1030–1034 (1988). CASPubMed Google Scholar
Brodeur, G. M. et al. Cytogenetic features of human neuroblastomas and cell lines. Cancer Res.41, 4678–4686 (1981). Definitive report of distal 1p deletions as a genetic change characteristic of neuroblastomas. The clinical significance of deletion of 1p was shown subsequently in large studies. CASPubMed Google Scholar
White, P. S. et al. A region of consistent deletion in neuroblastoma maps within 1p36.2-3. Proc. Natl Acad. Sci. USA92, 5520–5524 (1995). ArticleCASPubMed Google Scholar
Martinsson, T., Shoberg, P. -M., Hedborg, F. & Kogner, P. Deletion of chromosome 1p loci and microsatellite instability in neuroblastomas analyzed with short-tandem repeat polymorphisms. Cancer Res.55, 5681–5686 (1995). CASPubMed Google Scholar
Ejeskar, K. et al. Fine mapping of a tumour suppressor candidate gene region in 1p36.2-3, commonly deleted in neuroblastomas and germ cell tumours. Med. Pediatr. Oncol.36, 61–66 (2001). ArticleCASPubMed Google Scholar
Caron, H. et al. Chromosome bands 1p35-36 contain two distinct neuroblastoma tumor suppressor loci, one of which is imprinted. Genes Chromosom. Cancer30, 168–174 (2001). ArticleCASPubMed Google Scholar
Bauer, A. et al. Smallest region of overlapping deletion in 1p36 in human neuroblastoma: a 1 Mbp cosmid and PAC contig. Genes Chromosom. Cancer31, 228–239 (2001). ArticleCASPubMed Google Scholar
Hogarty, M. D. et al. Identification of a 1-megabase consensus region of deletion at 1p36.3 in primary neuroblastomas. Med. Pediatr. Oncol.35, 512–515 (2000). ArticleCASPubMed Google Scholar
Maris, J. M. et al. Comprehensive analysis of chromosome 1p deletions in neuroblastoma. Med. Pediatr. Oncol.36, 32–36 (2001). ArticleCASPubMed Google Scholar
Ohira, M. et al. Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line. Oncogene19, 4302–4307 (2000). ArticleCASPubMed Google Scholar
Chen, Y. Z. et al. Homozygous deletion in a neuroblastoma cell line defined by a high-density STS map spanning human chromosome band 1p36. Genes Chromosom. Cancer31, 326–332 (2001). ArticleCASPubMed Google Scholar
Srivatsan, E. S., Ying, K. L. & Seeger, R. C. Deletion of chromosome 11 and of 14q sequences in neuroblastoma. Genes Chromosom. Cancer7, 32–37 (1993). ArticleCASPubMed Google Scholar
Plantaz, D. et al. Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11q deletion in tumors lacking MYCN amplification. Int. J. Cancer91, 680–686 (2001). ArticleCASPubMed Google Scholar
Guo, C. et al. Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene18, 4948–4957 (1999). ArticleCASPubMed Google Scholar
Suzuki, T. et al. Frequent loss of heterozygosity on chromosome 14q in neuroblastoma. Cancer Res.49, 1095–1098 (1989). CASPubMed Google Scholar
Hoshi, M. et al. Detailed deletion mapping of chromosome band 14q32 in human neuroblastoma defines a 1.1-Mb region of common allelic loss. Br. J. Cancer82, 1801–1807 (2000). ArticleCASPubMedPubMed Central Google Scholar
Thompson, P. M. et al. Loss of heterozygosity for chromosome 14q in neuroblastoma. Med. Pediatr. Oncol.36, 28–31 (2001). ArticleCASPubMed Google Scholar
Vogan, K. et al. Absence of p53 gene mutations in primary neuroblastomas. Cancer Res.53, 5269–5273 (1993). CASPubMed Google Scholar
Hosoi, G. et al. Low frequency of the p53 gene mutations in neuroblastoma. Cancer73, 3087–3093 (1994). ArticleCASPubMed Google Scholar
Keshelava, N. et al. Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res.61, 6185–6193 (2001). CASPubMed Google Scholar
Tweddle, D. A., Malcolm, A. J., Bown, N., Pearson, A. D. & Lunec, J. Evidence for the development of p53 mutations after cytotoxic therapy in a neuroblastoma cell line. Cancer Res.61, 8–13 (2001). CASPubMed Google Scholar
Moll, U. M., LaQuaglia, M., Benard, J. & Riou, G. Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc. Natl Acad. Sci. USA92, 4407–4411 (1995). ArticleCASPubMed Google Scholar
Moll, U. M. et al. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol. Cell. Biol.16, 1126–1137 (1996). ArticleCASPubMedPubMed Central Google Scholar
Goldman, S. C., Chen, C. Y., Lansing, T. J., Gilmer, T. M. & Kastan, M. B. The p53 signal transduction pathway is intact in human neuroblastoma despite cytoplasmic localization. Am. J. Pathol.148, 1381–1385 (1996). CASPubMedPubMed Central Google Scholar
Beltinger, C. P., White, P. S., Sulman, E. P., Maris, J. M. & Brodeur, G. M. No CDKN2 mutations in neuroblastomas. Cancer Res.55, 2053–2055 (1995). CASPubMed Google Scholar
Iolascon, A. et al. Structural and functional analysis of cyclin-dependent kinase inhibitor genes (CDKN2A, CDKN2B, and CDKN2C) in neuroblastoma. Pediatr. Res.43, 139–144 (1998). ArticleCASPubMed Google Scholar
Kawamata, N., Seriu, T., Koeffler, H. P. & Bartram, C. R. Molecular analysis of the cyclin-dependent kinase inhibitor family: p16(CDKN2/MTS1/INK4A), p18(INK4C) and p27(Kip1) genes in neuroblastomas. Cancer77, 570–575 (1996). ArticleCASPubMed Google Scholar
Thompson, P. M. et al. Homozygous deletion of CDKN2A (p16INK4a/p14ARF) but not within 1p36 or at other tumor suppressor loci in neuroblastoma. Cancer Res.61, 679–686 (2001). CASPubMed Google Scholar
Johnson, M. R., Look, A. T., DeClue, J. E., Valentine, M. B. & Lowy, D. R. Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP Ras. Proc. Natl Acad. Sci. USA90, 5539–5543 (1993). ArticleCASPubMed Google Scholar
The, I. et al. Neurofibromatosis type 1 gene mutations in neuroblastoma. Nature Genet.3, 62–66 (1993). ArticleCASPubMed Google Scholar
Yano, H. & Chao, M. V. Neurotrophin receptor structure and interactions. Pharm. Acta Helv.74, 253–260 (2000). ArticleCASPubMed Google Scholar
Patapoutian, A. & Reichardt, L. F. Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol.11, 272–280 (2001). ArticleCASPubMed Google Scholar
Nakagawara, A. et al. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N. Engl. J. Med.328, 847–854 (1993). The first report to show the favourable prognostic value of TrkA expression in neuroblastomas. Other reports were reported independently with similar results. ArticleCASPubMed Google Scholar
Suzuki, T., Bogenmann, E., Shimada, H., Stram, D. & Seeger, R. C. Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J. Natl Cancer Inst.85, 377–384 (1993). ArticleCASPubMed Google Scholar
Kogner, P. et al. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res.53, 2044–2050 (1993). CASPubMed Google Scholar
Ambros, I. M. et al. Role of ploidy, chromosome 1p, and Schwann cells in the maturation of neuroblastoma. N. Engl. J. Med.334, 1505–1511 (1996). ArticleCASPubMed Google Scholar
Ambros, I. M. et al. Neuroblastoma cells provoke Schwann cell proliferation in vitro. Med. Pediatr. Oncol.36, 163–168 (2001). ArticleCASPubMed Google Scholar
Nakagawara, A. & Brodeur, G. M. Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur. J. Cancer33, 2050–2053 (1997). ArticleCASPubMed Google Scholar
Nakagawara, A., Azar, C. G., Scavarda, N. J. & Brodeur, G. M. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol. Cell. Biol.14, 759–767 (1994). The first report to associate TrkB and BDNF expression with high-risk neuroblastomas that haveMYCNamplification. ArticleCASPubMedPubMed Central Google Scholar
Acheson, A. et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature374, 450–453 (1995). ArticleCASPubMed Google Scholar
Matsumoto, K., Wada, R. K., Yamashiro, J. M., Kaplan, D. R. & Thiele, C. J. Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res.55, 1798–1806 (1995). CASPubMed Google Scholar
Eggert, A. et al. Expression of neurotrophin receptor TrkA inhibits angiogenesis in neuroblastoma. Med. Pediatr. Oncol.35, 569–572 (2000). ArticleCASPubMed Google Scholar
Ho, R. et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res.62, 6462–6466 (2002). CASPubMed Google Scholar
Yamashiro, D. J., Nakagawara, A., Ikegaki, N., Liu, X. -G. & Brodeur, G. M. Expression of TrkC in favorable human neuroblastomas. Oncogene12, 37–41 (1996). CASPubMed Google Scholar
Ryden, M. et al. Expression of mRNA for the neurotrophin receptor TrkC in neuroblastomas with favourable tumour stage and good prognosis. Br. J. Cancer74, 773–779 (1996). ArticleCASPubMedPubMed Central Google Scholar
Casaccia-Bonnefil, P., Gu, C. & Chao, M. V. Neurotrophins in cell survival/death decisions. Adv. Exp. Med. Biol.468, 275–282 (1999). ArticleCASPubMed Google Scholar
Goldstein, L. J. et al. Expression of the multidrug resistance, MDR1, gene in neuroblastomas. J. Clin. Oncol.8, 128–136 (1990). ArticleCASPubMed Google Scholar
Chan, H. S. et al. P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N. Engl. J. Med.325, 1608–1614 (1991). ArticleCASPubMed Google Scholar
Norris, M. D. et al. Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N. Engl. J. Med.334, 231–238 (1996). ArticleCASPubMed Google Scholar
Hiyama, E. et al. Correlating telomerase activity levels with human neuroblastoma outcomes. Nature Med.1, 249–255 (1995). ArticleCASPubMed Google Scholar
Brodeur, G. M. & Castle, V. P. in Apoptosis and Cancer Chemotherapy (eds Hickman, J. A. & Dive, C.) 305–318 (Humana, New Jersey, 1999). Book Google Scholar
Bunone, G., Mariotti, A., Compagni, A., Morandi, E. & Della Valle, G. Induction of apoptosis by p75 neurotrophin receptor in human neuroblastoma cells. Oncogene14, 1463–1470 (1997). ArticleCASPubMed Google Scholar
Fulda, S., Sieverts, H., Friesen, C., Herr, I. & Debatin, K. M. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res.57, 3823–3829 (1997). CASPubMed Google Scholar
Castle, V. P. et al. Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-myc amplification. Am. J. Pathol.143, 1543–1550 (1993). CASPubMedPubMed Central Google Scholar
Oue, T. et al. In situ detection of DNA fragmentation and expression of bcl-2 in human neuroblastoma: relation to apoptosis and spontaneous regression. J. Pediatr. Surg.31, 251–257 (1996). ArticleCASPubMed Google Scholar
Dole, M. et al. Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res.54, 3253–3259 (1994). CASPubMed Google Scholar
Dole, M. G. et al. Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res.55, 2576–2582 (1995). CASPubMed Google Scholar
Nakagawara, A. et al. High levels of expression and nuclear localization of interleukin-1β converting enzyme (ICE) and CPP32 in favorable human neuroblastomas. Cancer Res.57, 4578–4584 (1997). CASPubMed Google Scholar
Westermann, F. & Schwab, M. Genetic parameters of neuroblastomas. Cancer Lett.184, 127–147 (2002). ArticleCASPubMed Google Scholar
Brodeur, G. M. et al. Revisions of the international criteria for neuroblastoma diagnosis, staging and response to treatment. J. Clin. Oncol.11, 1466–1477 (1993). A description of the International Neuroblastoma Staging System currently used throughout the world. ArticleCASPubMed Google Scholar
Hann, H. W. L. et al. Prognostic importance of serum ferritin in patients with stages III and IV neuroblastoma. The Children's Cancer Study Group Experience. Cancer Res.45, 2843–2848 (1985). CASPubMed Google Scholar
Zeltzer, P. M., Marangos, P. J., Evans, A. E. & Schneider, S. L. Serum neuron-specific enolase in children with neuroblastoma. Relationship to stage and disease course. Cancer57, 1230–1234 (1986). ArticleCASPubMed Google Scholar
Ladisch, S. & Wu, Z. L. Detection of a tumour-associated ganglioside in plasma of patients with neuroblastoma. Lancet1, 136–138 (1985). ArticleCASPubMedPubMed Central Google Scholar
Quinn, J. J., Altman, A. J. & Frantz, C. N. Serum lactic dehydrogenase, an indicator of tumor activity in neuroblastoma. J. Pediatr.97, 89–91 (1980). ArticleCASPubMed Google Scholar
Shuster, J. J. et al. Serum lactate dehydrogenase in childhood neuroblastoma. A Pediatric Oncology Group recursive partitioning study. Am. J. Clin. Oncol.15, 295–303 (1992). ArticleCASPubMed Google Scholar
Shimada, H. et al. Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J. Natl Cancer Inst.73, 405–413 (1984). The original report of the popular histopathological classification for predicting outcome of neuroblastoma patients. This was subsequently revised into the International Neuroblastoma Pathology Classification. ArticleCASPubMed Google Scholar
Shimada, H. et al. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer86, 349–363 (1999). ArticleCASPubMed Google Scholar
Shimada, H. et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer86, 364–372 (1999). ArticleCASPubMed Google Scholar
Combaret, V. et al. Clinical relevance of CD44 cell-surface expression and N-myc gene amplification in a multicentric analysis of 121 pediatric neuroblastomas. J. Clin. Oncol.14, 25–34 (1996). ArticleCASPubMed Google Scholar
Castleberry, R. P. et al. The International Neuroblastoma Risk Groups (INRG): a preliminary report. Eur. J. Cancer33, 2113–2116 (1997). First report of an international consensus on neuroblastoma risk groups using a combination of clinical and biological variables. ArticleCASPubMed Google Scholar
Beckwith, J. & Perrin, E. In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am. J. Pathol.43, 1089–1104 (1963). CASPubMedPubMed Central Google Scholar
Turkel, S. B. & Itabashi, H. H. The natural history of neuroblastic cells in the fetal adrenal gland. Am. J. Pathol.76, 225–243 (1975). Google Scholar
Ikeda, Y., Lister, J., Bouton, J. M. & Buyukpamukcu, M. Congenital neuroblastoma, neuroblastoma in situ, and the normal fetal development of the adrenal. J. Pediatr. Surg.16, 636–644 (1981). ArticleCASPubMed Google Scholar
Evans, A. E., Gerson, J. & Schnaufer, L. Spontaneous regression of neuroblastoma. Natl Cancer Inst. Monogr.44, 49–54 (1976). CASPubMed Google Scholar
Sawada, T. et al. Neuroblastoma. Mass screening for early detection and its prognosis. Cancer53, 2731–2735 (1984). A seminal paper that indicates the potential value of mass screening for early detection of disease to improve the prognosis of neuroblastoma. Subsequent reports from mass screening programmes in Quebec and Germany indicate that there is no impact on mortality. ArticleCASPubMed Google Scholar
Woods, W. G. et al. A population-based study of the usefulness of screening for neuroblastoma. Lancet348, 1682–1687 (1996). ArticleCASPubMed Google Scholar
Hayashi, Y., Inaba, T., Hanada, R. & Yamamoto, K. Chromosome findings and prognosis in 15 patients with neuroblastoma found by VMA mass screening. J. Pediatr.112, 567–571 (1988). ArticleCASPubMed Google Scholar
Hayashi, Y., Hanada, R. & Yamamoto, K. Biology of neuroblastomas in Japan found by screening. Am. J. Pediatr. Hematol. Oncol.14, 342–347 (1992). ArticleCASPubMed Google Scholar
Brodeur, G. M. et al. Biological aspects of neuroblastomas identified by mass screening in Quebec. Med. Pediatr. Oncol.36, 157–159 (2001). ArticleCASPubMed Google Scholar
Woods, W. G. et al. Screening of infants and mortality due to neuroblastoma. N. Engl. J. Med.346, 1041–1046 (2002). ArticlePubMed Google Scholar
Schilling, F. H. et al. Neuroblastoma screening at one year of age. N. Engl. J. Med.346, 1047–1053 (2002). ArticlePubMed Google Scholar
Kaneko, Y., Kobayashi, H., Maseki, N., Nakagawara, A. & Sakurai, M. Disomy 1 with terminal 1p deletion is frequent in mass-screening-negative/late-presenting neuroblastomas in young children, but not in mass-screening-positive neuroblastomas in infants. Int. J. Cancer80, 54–59 (1999). ArticleCASPubMed Google Scholar
Tajiri, T. et al. Clinical and biologic characteristics for recurring neuroblastoma at mass screening cases in Japan. Cancer92, 349–353 (2001). ArticleCASPubMed Google Scholar
van Limpt, V. et al. SAGE analysis of neuroblastoma reveals a high expression of the human homologue of the Drosophila Delta gene. Med. Pediatr. Oncol.35, 554–558 (2000). ArticleCASPubMed Google Scholar
Spieker, N. et al. The MEIS1 oncogene is highly expressed in neuroblastoma and amplified in cell line IMR32. Genomics71, 214–221 (2001). ArticleCASPubMed Google Scholar
Khan, J. et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Med.7, 673–679 (2001). ArticleCASPubMed Google Scholar
Truckenmiller, M. E. et al. Gene expression profile in early stage of retinoic acid-induced differentiation of human SH-SY5Y neuroblastoma cells. Restor. Neurol. Neurosci.18, 67–80 (2001). CASPubMed Google Scholar
Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J.16, 2985–2995 (1997). First report of a transgenic mouse that overexpresses theMYCNproto-oncogene under the control of a tyrosine kinase promoter and develops neuroblastoma with high frequency. ArticleCASPubMedPubMed Central Google Scholar
Weiss, W. A., Godfrey, T., Francisco, C. & Bishop, J. M. Genome-wide screen for allelic imbalance in a mouse model for neuroblastoma. Cancer Res.60, 2483–2487 (2000). CASPubMed Google Scholar
Norris, M. D., Burkhart, C. A., Marshall, G. M., Weiss, W. A. & Haber, M. Expression of N-myc and MRP genes and their relationship to N-myc gene dosage and tumor formation in a murine neuroblastoma model. Med. Pediatr. Oncol.35, 585–589 (2000). ArticleCASPubMed Google Scholar
Sidell, N., Altman, A., Haussler, M. R. & Seeger, R. C. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp. Cell Res.148, 21–30 (1983). ArticleCASPubMed Google Scholar
Thiele, C. J., Reynolds, C. P. & Israel, M. A. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature313, 404–406 (1985). ArticleCASPubMed Google Scholar
Reynolds, C. P. et al. Comparison of 13-_cis_-retinoic acid to _trans_-retinoic acid using human neuroblastoma cell lines. Prog. Clin. Biol. Res.385, 237–244 (1994). CASPubMed Google Scholar
Matthay, K. K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-_cis_-retinoic acid. Children's Cancer Group. N. Engl. J. Med.341, 1165–1173 (1999). First clinical trial indicating that a survival advantage exists for the treatment of neuroblastoma patients with retinoic acid following bone-marrow transplantation. ArticleCASPubMed Google Scholar
Lovat, P. E. et al. Effector mechanisms of fenretinide-induced apoptosis in neuroblastoma. Exp. Cell Res.260, 50–60 (2000). ArticleCASPubMed Google Scholar
Ponzoni, M. et al. Differential effects of _N_-(4-hydroxyphenyl)retinamide and retinoic acid on neuroblastoma cells: apoptosis versus differentiation. Cancer Res.55, 853–861 (1995). CASPubMed Google Scholar
Reynolds, C. P. Differentiating agents in pediatric malignancies: retinoids in neuroblastoma. Curr. Oncol. Rep.2, 511–518 (2000). ArticleCASPubMed Google Scholar
Galderisi, U., Cascino, A. & Giordano, A. Antisense oligonucleotides as therapeutic agents. J. Cell Physiol.181, 251–257 (1999). ArticleCASPubMed Google Scholar
Evans, A. E. et al. Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clin. Cancer Res.5, 3594–3602 (1999). First report of a tyrosine kinase inhibitor that is selective for Trk receptors with potential use in treating neuroblastomas. CASPubMed Google Scholar
Meitar, D., Crawford, S. E., Rademaker, A. W. & Cohn, S. L. Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J. Clin. Oncol.14, 405–414 (1996). Definitive report correlating tumour angiogenesis with high-risk features and outcome in neuroblastomas. This report serves as the rationale for anti-angiogenesis therapy in high-risk neuroblastomas. ArticleCASPubMed Google Scholar
Wassberg, E., Pahlman, S., Westlin, J. E. & Christofferson, R. The angiogenesis inhibitor TNP-470 reduces the growth rate of human neuroblastoma in nude rats. Pediatr. Res.41, 327–333 (1997). ArticleCASPubMed Google Scholar
Katzenstein, H. M. et al. Effectiveness of the angiogenesis inhibitor TNP-470 in reducing the growth of human neuroblastoma in nude mice inversely correlates with tumor burden. Clin. Cancer Res.5, 4273–4278 (1999). CASPubMed Google Scholar
Shusterman, S., Grupp, S. A. & Maris, J. M. Inhibition of tumor growth in a human neuroblastoma xenograft model with TNP-470. Med. Pediatr. Oncol.35, 673–676 (2000). ArticleCASPubMed Google Scholar
Erdreich-Epstein, A. et al. Integrins α(v)β3 and α(v)β5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res.60, 712–721 (2000). CASPubMed Google Scholar
Jouanneau, E. et al. Lack of antitumor activity of recombinant endostatin in a human neuroblastoma xenograft model. J. Neurooncol.51, 11–18 (2001). ArticleCASPubMed Google Scholar
Kim, E. S. et al. Distinct response of experimental neuroblastoma to combination antiangiogenic strategies. J. Pediatr. Surg.37, 518–522 (2002). ArticlePubMed Google Scholar
Davidoff, A. M., Leary, M. A., Ng, C. Y. & Vanin, E. F. Gene therapy-mediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J. Pediatr. Surg.36, 30–36 (2001). ArticleCASPubMed Google Scholar
Hanahan, D., Bergers, G. & Bergsland, E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest.105, 1045–1047 (2000). ArticleCASPubMedPubMed Central Google Scholar
Frost, J. D. et al. A phase I/IB trial of murine monoclonal anti-GD2 antibody 14. G2a plus interleukin-2 in children with refractory neuroblastoma: a report of the Children's Cancer Group. Cancer80, 317–333 (1997). ArticleCASPubMed Google Scholar
Yu, A. L. et al. Phase I trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J. Clin. Oncol.16, 2169–2180 (1998). ArticleCASPubMed Google Scholar
Cheung, N. K., Kushner, B. H., Yeh, S. D. & Larson, S. M. 3F8 monoclonal antibody treatment of patients with stage 4 neuroblastoma: a phase II study. Int. J. Oncol.12, 1299–1306 (1998). CASPubMed Google Scholar
De Kraker, J. et al. First line targeted radiotherapy, a new concept in the treatment of advanced stage neuroblastoma. Eur. J. Cancer31A, 600–602 (1995). ArticleCASPubMed Google Scholar
Matthay, K. K. et al. Phase I dose escalation of 131I-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J. Clin. Oncol.16, 229–236 (1998). ArticleCASPubMed Google Scholar
Yanik, G. A. et al. Pilot study of iodine-131-metaiodobenzylguanidine in combination with myeloablative chemotherapy and autologous stem-cell support for the treatment of neuroblastoma. J. Clin. Oncol.20, 2142–2149 (2002). ArticleCASPubMed Google Scholar
Fitzek, M. M. et al. Neuroendocrine tumors of the sinonasal tract. Results of a prospective study incorporating chemotherapy, surgery, and combined proton-photon radiotherapy. Cancer94, 2623–2634 (2002). ArticlePubMed Google Scholar
Luttikhuis, M. E. et al. Neuroblastomas with chromosome 11q loss and single copy MYCN comprise a biologically distinct group of tumours with adverse prognosis. Br. J. Cancer85, 531–537 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bhattacharyya, N., Thornton, A. F., Joseph, M. P., Goodman, M. L. & Amrein, P. C. Successful treatment of esthesioneuroblastoma and neuroendocrine carcinoma with combined chemotherapy and proton radiation. Results in 9 cases. Arch. Otolaryngol. Head Neck Surg.123, 34–40 (1997). ArticleCASPubMed Google Scholar
Gurney, J. G. et al. Infant cancer in the US: histology-specific incidence and trends, 1973 to 1992. J. Pediatr. Hematol. Oncol.19, 428–432 (1997). ArticleCASPubMed Google Scholar
Schmidt, M. L. et al. Biologic factors determine prognosis in infants with stage IV neuroblastoma: a prospective Children's Cancer Group study. J. Clin. Oncol.18, 1260–1268 (2000). ArticleCASPubMed Google Scholar