RAS oncogenes: the first 30 years (original) (raw)
Harvey, J. J. An unidentified virus which causes the rapid production of tumors in mice. Nature204, 1104–1105 (1964). CASPubMed Google Scholar
Kirsten, W. H. & Mayer, L. A. Morphologic responses to a murine erythroblastosis virus. J. Natl Cancer Inst.39, 311–335 (1967). CASPubMed Google Scholar
Peters, R. L., Rabstein, L. S., VanVleck, R., Kelloff, G. J. & Huebner, R. J. Naturally occurring sarcoma virus of the BALB/cCr mouse. J. Natl Cancer Inst.53, 1725–1729 (1974). CASPubMed Google Scholar
Rasheed, S., Gardner, M. B. & Huebner, R. J. In vitro isolation of stable rat sarcoma viruses. Proc. Natl Acad. Sci. USA75, 2972–2976 (1978). CASPubMedPubMed Central Google Scholar
Scolnick, E. M., Rands, E., Williams, D. & Parks, W. P. Studies on the nucleic acid sequences of Kirsten sarcoma virus: a model for formation of a mammalian RNA-containing sarcoma virus. J. Virol.12, 458–463 (1973). CASPubMedPubMed Central Google Scholar
Hager, G. L. et al. Molecular cloning of the Harvey sarcoma virus closed circular DNA intermediates: initial structural and biological characterization. J. Virol.31, 795–809 (1979). CASPubMedPubMed Central Google Scholar
Tsuchida, N. & Uesugi, S. Structure and functions of the Kirsten murine sarcoma virus genome: molecular cloning of biologically active Kirsten murine sarcoma virus DNA. J. Virol.38, 720–727 (1981). CASPubMedPubMed Central Google Scholar
Ellis, R. W. et al. The p21 src genes of Harvey and Kirsten murine sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature292, 506–511 (1981). CASPubMed Google Scholar
Wigler, M., Pellicer, A., Silverstein, S. & Axel, R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell14, 725–731 (1978). CASPubMed Google Scholar
Shih, C., Shilo, B. Z., Goldfarb, M. P., Dannenberg, A. & Weinberg, R. A. Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc. Natl Acad. Sci. USA76, 5714–5718 (1979). CASPubMedPubMed Central Google Scholar
Shih, C., Padhy, L. C., Murray, M. & Weinberg, R. A. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature290, 261–264 (1981). CASPubMed Google Scholar
Perucho, M. et al. Human-tumor-derived cell lines contain common and different transforming genes. Cell27, 467–476 (1981). CASPubMed Google Scholar
Shih, C. & Weinberg, R. A. Isolation of a transforming sequence from a human bladder sarcoma cell line. Cell29, 161–169 (1982). CASPubMed Google Scholar
Goldfarb, M., Shimizu, K., Perucho, M. & Wigler, M. Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature296, 404–409 (1982). CASPubMed Google Scholar
Pulciani, S. et al. Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells. Proc. Natl Acad. Sci. USA79, 2845–2849 (1982). CASPubMedPubMed Central Google Scholar
Der, C. J., Krontiris, T. G. & Cooper, G. M. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc. Natl Acad. Sci. USA79, 3637–3640 (1982). CASPubMedPubMed Central Google Scholar
Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras. Nature297, 474–478 (1982). CASPubMed Google Scholar
Santos, E., Tronick, S. R., Aaronson, S. A., Pulciani, S. & Barbacid, M. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature298, 343–347 (1982). CASPubMed Google Scholar
Parada, L. F. & Weinberg, R. A. Presence of a Kirsten murine sarcoma virus ras oncogene in cells transformed by 3-methylcholanthrene. Mol. Cell. Biol.3, 2298–2301 (1983). CASPubMedPubMed Central Google Scholar
Shimizu, K., Goldfarb, M., Perucho, M. & Wigler, M. Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc. Natl Acad. Sci. USA80, 383–387 (1983). CASPubMedPubMed Central Google Scholar
Hall, A., Marshall, C. J., Spurr, N. K. & Weiss, R. A. Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature303, 396–400 (1983). CASPubMed Google Scholar
Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature300, 149–152 (1982). CASPubMed Google Scholar
Tabin, C. J. et al. Mechanism of activation of a human oncogene. Nature300, 143–147 (1982). CASPubMed Google Scholar
Taparowsky, E. et al. Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature300, 762–765 (1982). CASPubMed Google Scholar
Muschel, R. J., Khoury, G., Lebowitz, P., Koller, R. & Dhar, R. The human c-ras1H oncogene: a mutation in normal and neoplastic tissue from the same patient. Science219, 853–856 (1983). CASPubMed Google Scholar
Duesberg, P. H. Activated proto-onc genes: sufficient or necessary for cancer? Science228, 669–677 (1985). CASPubMed Google Scholar
Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature304, 596–602 (1983). ArticleCASPubMed Google Scholar
Newbold, R. F. & Overell, R. W. Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature304, 648–651 (1983). CASPubMed Google Scholar
Ruley, H. E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature304, 602–606 (1983). CASPubMed Google Scholar
Santos, E. et al. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science223, 661–664 (1984). CASPubMed Google Scholar
Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res.49, 4682–4689 (1989). CASPubMed Google Scholar
Bos, J. L. et al. Prevalence of ras gene mutations in human colorectal cancers. Nature327, 293–297 (1987). CASPubMed Google Scholar
Forrester, K., Almoguera, C., Han, K., Grizzle, W. E. & Perucho, M. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature327, 298–303 (1987). CASPubMed Google Scholar
Rodenhuis, S. et al. Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. N. Engl. J. Med.317, 929–935 (1987). CASPubMed Google Scholar
Almoguera, C. et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell53, 549–554 (1988). CASPubMed Google Scholar
Balmain, A. & Pragnell, I. B. Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature303, 72–74 (1983). CASPubMed Google Scholar
Sukumar, S., Notario, V., Martin-Zanca, D. & Barbacid, M. Induction of mammary carcinomas in rats by nitroso-methyl-urea involves the malignant activation of the H-_ras_-1 locus by single point mutations. Nature306, 658–661 (1983). CASPubMed Google Scholar
Guerrero, I., Calzada, P., Mayer, A. & Pellicer, A. A molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene. Proc. Natl Acad. Sci. USA81, 202–205 (1984). CASPubMedPubMed Central Google Scholar
Parks, W. P. & Scolnick, E. M. In vitro translation of Harvey murine sarcoma virus RNA. J. Virol.22, 711–719 (1977). CASPubMedPubMed Central Google Scholar
Shih, T. Y., Weeks, M. O., Young, H. A. & Scolnick, E. M. p21 of Kirsten murine sarcoma virus is thermolabile in a viral mutant temperature sensitive for the maintenance of transformation. J. Virol.31, 546–546 (1979). CASPubMedPubMed Central Google Scholar
Shih, T. Y., Weeks, M. O., Young, H. A. & Scolnick, E. M. Identification of a sarcoma virus-coded phosphoprotein in nonproducer cells tranformed by Kirsten or Harvey murine sarcoma virus. Virology96, 64–79 (1979). CASPubMed Google Scholar
Scolnick, E. M., Papageorge, A. G. & Shih, T. Y. Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses. Proc. Natl Acad. Sci. USA76, 5355–5359 (1979). CASPubMedPubMed Central Google Scholar
Willingham, M. C., Pastan, I., Shih, T. Y. & Scolnick, E. M. Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistry. Cell19, 1005–1014 (1980). CASPubMed Google Scholar
Willumsen, B. M., Christensen, A., Hubbert, H. L., Papageorge, A. G. & Lowy, D. R. The p21ras c-terminus is required for transformation and membrane association. Nature310, 583–586 (1984). CASPubMed Google Scholar
Gibbs, J. B., Sigal, I. S., Poe, M. & Scolnick, E. M. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc. Natl Acad. Sci. USA81, 5704–5708 (1984). CASPubMedPubMed Central Google Scholar
McGrath, J. P., Capon, D. J., Goeddel, D. V. & Levinson, A. D. Comparative biochemical properties of normal and activated human ras p21 protein. Nature310, 644–649 (1984). CASPubMed Google Scholar
Sweet, R. W. et al. The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature311, 273–275 (1984). CASPubMed Google Scholar
Hurley, J. B., Simon, M. I., Teplow, D. B., Robishaw, J. D. & Gilman, A. G. Homologies between signal transducing G proteins and ras gene products. Science226, 860–862 (1984). CASPubMed Google Scholar
Toda, T. et al. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell40, 27–36 (1985). CASPubMed Google Scholar
Kamata, T. & Feramisco, J. R. Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins. Nature310, 147–150 (1984). CASPubMed Google Scholar
Mulcahy, L. S., Smith, M. R. & Stacey, D. W. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature313, 241–243 (1985). CASPubMed Google Scholar
Smith, M. R., DeGudicibus, S. J. & Stacey, D. W. Requirement for c-Ras proteins during viral oncogene transformation. Nature320, 540–543 (1986). CASPubMedPubMed Central Google Scholar
Birchmeier, C., Broek, D. & Wigler, M. ras proteins can induce meiosis in Xenopus oocytes. Cell43, 615–621 (1985). CASPubMed Google Scholar
Trahey, M. & McCormick, F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science238, 542–545 (1987). CASPubMed Google Scholar
Trahey, M. et al. Molecular cloning of two types of GAP complementary DNA from human placenta. Science242, 1697–1700 (1988). CASPubMed Google Scholar
Vogel, U. S. et al. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature335, 90–93 (1988). CASPubMed Google Scholar
Ballester, R. et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell63, 851–859 (1990). CASPubMed Google Scholar
Martin, G. A. et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell63, 843–849 (1990). CASPubMed Google Scholar
Wallace, M. R. et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science249, 181–186 (1990). CASPubMed Google Scholar
Xu, G. et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell62, 599–608 (1990). CASPubMed Google Scholar
Broek, D. et al. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell48, 789–799 (1987). CASPubMed Google Scholar
Robinson, L. C., Gibbs, J. B., Marshall, M. S., Sigal, I. S. & Tatchell, K. CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science235, 1218–1221 (1987). CASPubMed Google Scholar
Wolfman, A. & Macara, I. G. A cytosolic protein catalyzes the release of GDP from p21ras. Science248, 67–69 (1990). CASPubMed Google Scholar
Downward, J., Riehl, R., Wu, L. & Weinberg, R. A. Identification of a nucleotide exchange-promoting activity for p21ras. Proc. Natl Acad. Sci. USA87, 5998–6002 (1990). CASPubMedPubMed Central Google Scholar
Martegani, E. et al. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J.11, 2151–2157 (1992). CASPubMedPubMed Central Google Scholar
Bowtell, D., Fu, P., Simon, M. & Senior, P. Identification of murine homologues of the Drosophila son of sevenless gene: potential activators of ras. Proc. Natl Acad. Sci. USA89, 6511–6515 (1992). CASPubMedPubMed Central Google Scholar
Shou, C., Farnsworth, C. L., Neel, B. G. & Feig, L. A. Molecular cloning of cDNAs encoding a guanine-releasing factor for ras p21. Nature358, 351–354 (1992). CASPubMed Google Scholar
Wei, W. et al. Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA89, 7100–7104 (1992). CASPubMedPubMed Central Google Scholar
Clark, S. G., Stern, M. J. & Horvitz, H. R. C. elegans cell-signalling gene Sem-5 encodes a protein with SH2 and SH3 domains. Nature356, 340–344 (1992). CASPubMed Google Scholar
Lowenstein, E. J. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to Ras signalling. Cell70, 431–442 (1992). CASPubMed Google Scholar
Matuoka, K., Shibata, M., Yamakawa, A. & Takenawa, T. Cloning of ASH, a ubiquitous protein composed of one Src homology region (SH) 2 and two SH3 domains, from human and rat cDNA libraries. Proc. Natl Acad. Sci. USA89, 9015–9019 (1992). CASPubMedPubMed Central Google Scholar
McCormick, F. Signal transduction. How receptors turn Ras on. Nature363, 15–16 (1993). CASPubMed Google Scholar
Rapp, U. R. & Todaro, G. J. Generation of oncogenic mouse type C viruses: in vitro selection of carcinoma-inducing variants. Proc. Natl Acad. Sci. USA77, 624–628 (1980). CASPubMedPubMed Central Google Scholar
Moodie, S. A., Willumsen, B. M., Weber, M. J. & Wolfman, A. Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science260, 1658–1661 (1993). CASPubMed Google Scholar
Warne, P. H., Rodriguez-Viciana, P. & Downward, J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature364, 352–355 (1993). CASPubMed Google Scholar
Zhang, X. F. et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature364, 308–313 (1993). CASPubMed Google Scholar
Vojitek, A. B., Hollenbarg, S. M. & Cooper, J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell74, 205–214 (1993). Google Scholar
Han, M., Golden, A., Han, Y. & Sternberg, P. W. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature363, 133–140 (1993). CASPubMed Google Scholar
Sjolander, A., Yamamoto, K., Huber, B. E. & Lapetina, E. G. Association of p21ras with phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA88, 7908–7912 (1991). CASPubMedPubMed Central Google Scholar
Kazlauskas, A. Receptor tyrosine kinases and their targets. Curr. Opin. Genet. Dev.4, 5–14 (1994). CASPubMed Google Scholar
Rodríguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target for ras. Nature370, 527–532 (1994). PubMed Google Scholar
Hofer, F., Fields, S., Schneider, C. & Martin, G. S. Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc. Natl Acad. Sci. USA91, 11089–11093 (1994). CASPubMedPubMed Central Google Scholar
Kikuchi, A., Demo, S. D., Ye, Z. H., Chen, Y. W. & Williams, L. T. ralGDS family members interact with the effector loop of ras p21. Mol. Cell. Biol.14, 7483–7491 (1994). CASPubMedPubMed Central Google Scholar
Spaargaren, M. & Bischoff, J. R. Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras, and Rap. Proc. Natl Acad. Sci. USA91, 12609–12613 (1994). CASPubMedPubMed Central Google Scholar
Schafer, W. R. et al. Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans. Science245, 379–385 (1989). CASPubMed Google Scholar
Schafer, W. R. et al. Enzymatic coupling of cholesterol intermediates to a mating pheromone precursor and to the ras protein. Science249, 1133–1139 (1990). CASPubMed Google Scholar
Reiss, Y., Goldstein, J. L., Seabra, M. C., Casey, P. J. & Brown, M. S. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell62, 81–88 (1990). CASPubMed Google Scholar
Kohl, N. E. et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nature Med.1, 792–797 (1995). CASPubMed Google Scholar
Nagasu, T., Yoshimatsu, K., Rowell, C., Lewis, M. D. & Garcia. A. M. Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res.55, 5310–5314 (1995). CASPubMed Google Scholar
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer3, 11–22 (2003). CAS Google Scholar
Vos, A. M. et al. Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science239, 888–893 (1988). PubMed Google Scholar
Pai, E. F. et al. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature341, 209–214 (1989). CASPubMed Google Scholar
Schlichting, I. et al. Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature345, 309–315 (1990). CASPubMed Google Scholar
Krengel, U. et al. Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell62, 539–548 (1990). CASPubMed Google Scholar
Tong, L. A., de Vos, A. M., Milburn, M. V. & Kim, S. H. Crystal structures at 2.2 Å resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. Mol. Biol.217, 503–516 (1991). CASPubMed Google Scholar
Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and itss loss in oncogenic Ras mutants. Science277, 333–338 (1997). CASPubMed Google Scholar
Ahmadian, M. R. et al. Guanosine triphosphatase stimulation of oncogenic Ras mutants. Proc. Natl Acad. Sci. USA96, 7065–7070 (1999). CASPubMedPubMed Central Google Scholar
Boriack-Sjodin, P. A. et al. The structural basis of the activation of Ras by Sos. Nature394, 337–343 (1998). CASPubMed Google Scholar
Huang, L., Hofer, F., Martin, G. S. & Kim, S. H. Structural basis for the interaction of Ras with RalGDS. Nature Struct. Biol.5, 422–426 (1998). CASPubMed Google Scholar
Pacold, M. E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell103, 931–943 (2000). CASPubMed Google Scholar
Reuther, G. W. & Der, C. J. The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr. Opin. Cell Biol.12, 157–165 (2000). CASPubMed Google Scholar
Johnson, L. et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev.11, 2468–2481 (1997). CASPubMedPubMed Central Google Scholar
Koera, K. et al. K-ras is essential for the development of the mouse embryo. Oncogene15, 1151–1159 (1997). CASPubMed Google Scholar
Esteban, L. M. et al. Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol. Cell. Biol.21, 1444–1452 (2001). CASPubMedPubMed Central Google Scholar
Bivona, T. G. & Philips, M. R. Ras pathway signaling on endomembranes. Curr. Opin. Cell Biol.15, 136–142 (2003). CASPubMed Google Scholar
Hamad, N. M. et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev.16, 2045–2057 (2002). CASPubMedPubMed Central Google Scholar
Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature417, 949–954 (2002). CASPubMed Google Scholar
Balmain, A., Ramsden, M., Bowden, G. T. & Smith, J. Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature307, 658–660 (1984). CASPubMed Google Scholar
Zarbl, H., Sukumar, S., Arthur, A., Martin-Zanca, D. & Barbacid, M. Direct mutagenesis of H-ras-1 oncogenes by _N_-nitroso-_N_-methylurea during initiation of mammary carcinogenesis in rats. Nature315, 382–385 (1985). CASPubMed Google Scholar
Wiseman, R. W., Stowers, S. J., Miller, E. C., Anderson, M. W. & Miller, J. A. Activating mutations of the c-Ha-ras protooncogene in chemically induced hepatomas of the male B6C3 F1 mouse. Proc. Natl Acad. Sci. USA83, 5825–5829 (1986). CASPubMedPubMed Central Google Scholar
Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature400, 468–472 (1999). CASPubMed Google Scholar
Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev.15, 3249–3262 (2001). CASPubMedPubMed Central Google Scholar
Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature410, 1111–1116 (2001). CASPubMed Google Scholar
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev.15, 3243–3248 (2001). CASPubMedPubMed Central Google Scholar
Sinn, E., Muller, W., Pattengale, P., Tepler, I., Wallace, R. & Leder, P. Coexpression of MMTV/v-Ha-ras and MMTV/ c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell49, 465–475 (1987). CASPubMed Google Scholar
Quaife, C. J., Pinkert, C. A., Ornitz, D. M., Palmiter, R. D. & Brinster, R. L. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell48, 1023–1034 (1987). CASPubMed Google Scholar
Umanoff, H., Edelmann, W., Pellicer, A. & Kucherlapati, R. The murine N-ras gene is not essential for growth and development. Proc. Natl Acad. Sci. USA92, 1709–1713 (1995). CASPubMedPubMed Central Google Scholar
Pérez de Castro, I. et al. Mice deficient for N-ras: impaired antiviral immune response and T-cell function. Cancer Res.63, 1615–1622 (2003). PubMed Google Scholar
Ise, K. et al. Targeted deletion of the H–ras gene decreases tumor formation in mouse skin carcinogenesis. Oncogene19, 2951–2956 (2000). CASPubMed Google Scholar