The emerging role of lysophosphatidic acid in cancer (original) (raw)
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
van Corven, E. J., Groenink, A., Jalink, K., Eichholtz, T. & Moolenaar, W. H. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell59, 45–54 (1989). Seminal observation that LPA has growth-factor-like activities, and signals in a strictly G-protein-dependent manner. CASPubMed Google Scholar
Imamura, F. et al. Induction of in vitro tumour cell invasion of cellular monolayers by lysophosphatidic acid or phospholipase D. Biochem. Biophys. Res. Commun.193, 497–503 (1993). CASPubMed Google Scholar
Jalink, K., Hordijk, P. L. & Moolenaar, W. H. Growth factor-like effects of lysophosphatidic acid, a novel lipid mediator. Biochim. Biophys. Acta1198, 185–196 (1994). PubMed Google Scholar
Xu, Y., Fang, X. J., Casey, G. & Mills, G. B. Lysophospholipids activate ovarian and breast cancer cells. Biochem. J.309, 933–940 (1995). CASPubMedPubMed Central Google Scholar
Xu, Y., Casey, G. & Mills, G. B. Effect of lysophospholipids on signaling in the human Jurkat T cell line. J. Cell Physiol.163, 441–450 (1995). CASPubMed Google Scholar
Levine, J. S., Koh, J. S., Triaca, V. & Lieberthal, W. Lysophosphatidic acid: a novel growth and survival factor for renal proximal tubular cells. Am. J. Physiol.273, F575–F585 (1997). CASPubMed Google Scholar
Altun-Gultekin, Z. F. et al. Activation of Rho-dependent cell spreading and focal adhesion biogenesis by the v-Crk adaptor protein. Mol. Cell Biol.18, 3044–3058 (1998). CASPubMedPubMed Central Google Scholar
Stam, J. C., Michiels, F., van der Kammen, R. A., Moolenaar, W. H. & Collard, J. G. Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J.17, 4066–4074 (1998). CASPubMedPubMed Central Google Scholar
Weiner, J. A. & Chun, J. Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc. Natl Acad. Sci. USA96, 5233–5238 (1999). CASPubMedPubMed Central Google Scholar
Jalink, K., Eichholtz, T., Postma, F. R., van Corven, E. J. & Moolenaar, W. H. Lysophosphatidic acid induces neuronal shape changes via a novel, receptor-mediated signaling pathway: similarity to thrombin action. Cell Growth Differ.4, 247–255 (1993). First demonstration that LPA induces neurite retraction in neuroblastoma cells. CASPubMed Google Scholar
Jalink, K., van Corven, E. J., Hengeveld, T., Morii, N., Narumiya, S. & Moolenaar, W. H. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol.126, 801–810 (1994). First paper indicating a role for RHOA in LPA-induced 'dedifferentiation' of neuroblastoma cells, independently of classic second messengers. CASPubMed Google Scholar
Hill, C. S., Oh, S. Y., Schmidt, S. A., Clark, K. J. & Murray, A. W. Lysophosphatidic acid inhibits gap-junctional communication and stimulates phosphorylation of connexin-43 in WB cells: possible involvement of the mitogen-activated protein kinase cascade. Biochem. J.303, 475–479 (1994). PubMedPubMed Central Google Scholar
Tigyi, G. et al. Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. J. Neurochem.66, 537–548 (1996). CASPubMed Google Scholar
Schulze, C., Smales, C., Rubin, L. L. & Staddon, J. M. Lysophosphatidic acid increases tight junction permeability in cultured brain endothelial cells. J. Neurochem.68, 991–1000 (1997). CASPubMed Google Scholar
Postma, F. R. et al. Acute loss of cell–cell communication caused by G protein-coupled receptors: a critical role for c-Src. J. Cell Biol.140, 1199–1209 (1998). CASPubMedPubMed Central Google Scholar
van Nieuw Amerongen, G. P., Vermeer, M. A. & van Hinsbergh, V. W. Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler. Thromb. Vasc. Biol.20, E127–E133 (2000). CASPubMed Google Scholar
Pustilnik, T. B. et al. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin. Cancer Res.5, 3704–3710 (1999). CASPubMed Google Scholar
Palmetshofer, A., Robson, S. C. & Nehls, V. Lysophosphatidic acid activates nuclear factor kappa B and induces proinflammatory gene expression in endothelial cells. Thromb. Haemost.82, 1532–1537 (1999). CASPubMed Google Scholar
Schwartz, B. M. et al. Lysophospholipids increase interleukin-8 expression in ovarian cancer cells. Gynecol. Oncol.81, 291–300 (2001). CASPubMed Google Scholar
Fishman, D. A., Liu, Y., Ellerbroek, S. M. & Stack, M. S. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res.61, 3194–3199 (2001). CASPubMed Google Scholar
Zheng, Y., Kong, Y. & Goetzl, E. J. Lysophosphatidic acid receptor-selective effects on Jurkat T cell migration through a Matrigel model basement membrane. J. Immunol.166, 2317–2322 (2001). CASPubMed Google Scholar
Hu, Y. L. et al. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J. Natl Cancer Inst.93, 762–768 (2001). CASPubMed Google Scholar
Gschwind, A., Hart, S., Fischer, O. M. & Ullrich, A. TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. EMBO J.22, 2411–2421 (2003). Novel mechanism for transactivation of tyrosine-kinase receptors by G-protein-coupled receptors. CASPubMedPubMed Central Google Scholar
Fang, X. et al. Mechanisms of lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J. Biol. Chem. (in the press).
Sturm, A., Sudermann, T., Schulte, K. M., Goebell, H. & Dignass, A. U. Modulation of intestinal epithelial wound healing in vitro and in vivo by lysophosphatidic acid. Gastroenterology117, 368–377 (1999). CASPubMed Google Scholar
Lee, H., Goetzl, E. J. & An, S. Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am. J. Physiol. Cell Physiol.278, C612–C618 (2000). CASPubMed Google Scholar
Watsky, M. A., Griffith, M., Wang, D. A. & Tigyi, G. J. Phospholipid growth factors and corneal wound healing. Ann. NY Acad. Sci.905, 142–158 (2000). CASPubMed Google Scholar
Balazs, L., Okolicany, J., Ferrebee, M., Tolley, B. & Tigyi, G. Topical application of the phospholipid growth factor lysophosphatidic acid promotes wound healing in vivo. Am. J. Physiol. Regul. Integr. Comp. Physiol.280, R466–R472 (2001). CASPubMed Google Scholar
Daub, H., Weiss, F. U., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature379, 557–560 (1996). Demonstration of cross-talk between G-protein-coupled receptors and receptor protein tyrosine kinases. CASPubMed Google Scholar
Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature402, 884–888 (1999). CASPubMed Google Scholar
Hordijk, P. L., Verlaan, I., van Corven, E. J. & Moolenaar, W. H. Protein tyrosine phosphorylation induced by lysophosphatidic acid in Rat-1 fibroblasts. Evidence that phosphorylation of map kinase is mediated by the Gi-p21ras pathway. J. Biol. Chem.269, 645–651 (1994). CASPubMed Google Scholar
Kumagai, N., Morii, N., Fujisawa, K., Nemoto, Y., & Narumiya, S. ADP-ribosylation of rho p21 inhibits lysophosphatidic acid-induced protein tyrosine phosphorylation and phosphatidylinositol 3-kinase activation. J. Biol. Chem.268, 24535–24538 (1993). CASPubMed Google Scholar
Holtsberg, F. W. et al. Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons. J. Neurochem.70, 66–76 (1998). CASPubMed Google Scholar
Holtsberg, F. W. et al. Lysophosphatidic acid and apoptosis of nerve growth factor-differentiated PC12 cells. J. Neurosci. Res.53, 685–696 (1998). CASPubMed Google Scholar
Okusa, M. D. et al. Selective blockade of lysophosphatidic acid LPA3 receptors reduces murine renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 27 May 2003 [epub ahead of print]. Use of receptor-selective LPA agonists and antagonistsin vivoto define the function and role of particular LPA receptors in ischaemia reperfusion.
Tokumura, A. et al. Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta. Am. J. Physiol.267, C204–C210 (1994). CASPubMed Google Scholar
Tokumura, A., Yotsumoto, T., Masuda, Y. & Tanaka, S. Vasopressor effect of lysophosphatidic acid on spontaneously hypertensive rats and Wistar Kyoto rats. Res. Commun. Mol. Pathol. Pharmacol.90, 96–102 (1995). CASPubMed Google Scholar
Cerutis, D. R. et al. Lysophosphatidic acid and EGF stimulate mitogenesis in human airway smooth muscle cells. Am. J. Physiol.273, L10–L15 (1997). CASPubMed Google Scholar
Toews, M. L., Ustinova, E. E. & Schultz, H. D. Lysophosphatidic acid enhances contractility of isolated airway smooth muscle. J. Appl. Physiol.83, 1216–1222 (1997). CASPubMed Google Scholar
Rizza, C. et al. Lysophosphatidic acid as a regulator of endothelial/leukocyte interaction. Lab. Invest.79, 1227–1235 (1999). CASPubMed Google Scholar
Scalia, R., Pruefer, D. & Lefer, A. M. A novel lysophosphatidic acid analog, LXR-1035, inhibits leukocyte-endothelium interaction via inhibition of cell adhesion molecules. J. Leukoc. Biol.67, 26–33 (2000). CASPubMed Google Scholar
Hayashi, K. et al. Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ. Res.89, 251–258 (2001). CASPubMed Google Scholar
Natarajan, V., Scribner, W. M., Hart, C. M. & Parthasarathy, S. Oxidized low density lipoprotein-mediated activation of phospholipase D in smooth muscle cells: a possible role in cell proliferation and atherogenesis. J. Lipid Res.36, 2005–2016 (1995). CASPubMed Google Scholar
Siess, W. et al. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc. Natl Acad. Sci. USA96, 6931–6936 (1999). Clear implication of LPA in atherosclerosis. CASPubMedPubMed Central Google Scholar
Schmidt, A. et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature401, 133–141 (1999). Demonstration of a potential role for intracellular LPA in vesicle formation. CASPubMed Google Scholar
McIntyre, T. M. et al. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc. Natl Acad. Sci. USA100, 131–136 (2003). Potential novel function for intracelullar LPA in the activation of the transcription factor PPARγ. CASPubMed Google Scholar
van Corven, E. J., Hordijk, P. L., Medema, R. H., Bos, J. L. & Moolenaar, W. H. Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc. Natl Acad. Sci. USA90, 1257–1261 (1993). First paper showing that G-protein-coupled receptor ligands, including LPA, can activate RAS via pertussis-toxin-sensitive Giand a putative protein tyrosine kinase. CASPubMedPubMed Central Google Scholar
van Dijk, M. C. et al. Exogenous phospholipase D generates lysophosphatidic acid and activates Ras, Rho and Ca2+ signaling pathways. Curr. Biol.8, 386–392 (1998). First demonstration that a secreted phospholipase D (of bacterial origin) can generate LPA and activate LPA signalling pathways in mammalian cells. CASPubMed Google Scholar
Kranenburg, O. et al. Activation of RhoA by lysophosphatidic acid and G12/13 subunits in neuronal cells: induction of neurite retraction. Mol. Biol. Cell10, 1851–1857 (1999). CASPubMedPubMed Central Google Scholar
Fang, X. et al. Lysophosphatidic acid prevents apoptosis in fibroblasts via G(i)-protein-mediated activation of mitogen-activated protein kinase. Biochem. J.352, 135–143 (2000). CASPubMedPubMed Central Google Scholar
Fang, X. et al. Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann. NY Acad. Sci.905, 188–208 (2000). CASPubMed Google Scholar
Kranenburg, O. & Moolenaar, W. H. Ras-MAP kinase signalling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene20, 1540–1546 (2001). CASPubMed Google Scholar
Van Leeuwen, F. N. et al. Rac activation by lysophosphatidic acid LPA1 receptors through the guanine nucleotide exchange factor Tiam1. J. Biol. Chem.278, 400–406 (2003). Shows that LPA1 receptors signal RAC activation and cell migration via the invasion-inducing GDP/GTP exchange factor TIAM1. CASPubMed Google Scholar
Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature420, 629–635 (2002). CASPubMed Google Scholar
Takeda, H. et al. PI 3-kinase gamma and protein kinase C-zeta mediate RAS-independent activation of MAP kinase by a Gi protein-coupled receptor. EMBO J.18, 386–395 (1999). CASPubMedPubMed Central Google Scholar
Malliri, A. et al. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature417, 867–871 (2002). CASPubMed Google Scholar
Hecht, J. H., Weiner, J. A., Post, S. R. & Chun, J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J. Cell. Biol.135, 1071–1083 (1996). Identification and cloning of the first LPA receptor. CASPubMed Google Scholar
An, S., Dickens, M. A., Bleu, T., Hallmark, O. G. & Goetzl, E. J. Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid. Biochem. Biophys. Res. Commun.231, 619–622 (1997). CASPubMed Google Scholar
An, S., Bleu, T., Hallmark, O. G. & Goetzl, E. J. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem.273, 7906–7910 (1998). Identification and cloning of the second LPA receptor. CASPubMed Google Scholar
Bandoh, K. et al. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J. Biol. Chem.274, 27776–27785 (1999). Cloning ofEDG7/LPA3, the third LPA receptor. CASPubMed Google Scholar
Im, D. S. et al. Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol. Pharmacol.57, 753–759 (2000). Cloning of the third LPA receptorEDG7/LPA3 from prostate cancer cells. CASPubMed Google Scholar
Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. & Kluk, M. J. Lysophospholipids — receptor revelations. Science294, 1875–1878 (2001). CASPubMed Google Scholar
Noguchi, K., Ishii, S. & Shimizu, T. Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J. Biol. Chem. 30 Apr 2003 [epub ahead of print]. Identification of the fourth LPA receptor,LPA4.
Contos, J. J. & Chun, J. The mouse lp(A3)/Edg7 lysophosphatidic acid receptor gene: genomic structure, chromosomal localization, and expression pattern. Gene267, 243–253 (2001). CASPubMed Google Scholar
Fang, X. et al. Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim. Biophys. Acta1582, 257–264 (2002). CASPubMed Google Scholar
Goetzl, E. J. et al. Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res.59, 5370–5375 (1999). CASPubMed Google Scholar
Furui, T. et al. Overexpression of edg-2/vzg-1 induces apoptosis and anoikis in ovarian cancer cells in a lysophosphatidic acid-independent manner. Clin. Cancer Res.5, 4308–4318 (1999). CASPubMed Google Scholar
Eder, A. M., Sasagawa, T., Mao, M., Aoki, J. & Mills, G. B. Constitutive and lysophosphatidic acid (LPA)-induced LPA production: role of phospholipase D and phospholipase A2. Clin. Cancer Res.6, 2482–2491 (2000). CASPubMed Google Scholar
Schulte, K. M., Beyer, A., Kohrer, K., Oberhauser, S. & Roher, H. D. Lysophosphatidic acid, a novel lipid growth factor for human thyroid cells: over-expression of the high-affinity receptor edg4 in differentiated thyroid cancer. Int. J. Cancer92, 249–256 (2001). CASPubMed Google Scholar
Contos, J. J., Fukushima, N., Weiner, J. A. & Kaushal, D. J. Requirement for the LPA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc. Natl Acad. Sci. USA97, 13384–13389 (2000). Shows thatLpa1-knockout mice have reduced viability because of defects in suckling behaviour. CASPubMedPubMed Central Google Scholar
Contos, J. J. et al. Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol. Cell Biol.22, 6921–6929 (2002). Shows that compoundLpa1/Lpa2-knockout mice have a phenotype that is not significantly different fromLpa1-knockout mice. This indicates redundancy in the system and strengthens the likelihood that drugs can be developed against LPA production or function. CASPubMedPubMed Central Google Scholar
Shida, D. et al. Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res.63, 1706–1711 (2003). CASPubMed Google Scholar
Fischer, D. J. et al. Naturally occurring analogs of lysophosphatidic acid elicit different cellular responses through selective activation of multiple receptor subtypes. Mol. Pharmacol.54, 979–988 (1998). CASPubMed Google Scholar
Erickson, J. R., Espinal, G. & Mills, G. B. Analysis of the EDG2 receptor based on the structure/activity relationship of LPA. Ann. N Y Acad. Sci.905, 279–281 (2000). CASPubMed Google Scholar
Fischer, D. J. et al. Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol. Pharmacol.60, 776–784 (2001). Identification of a compound LPA1/LPA3 inhibitor. Low activity and stability limit use toin vitrostudies. CASPubMed Google Scholar
Wang, D. A. et al. A single amino acid determines lysophospholipid specificity of the S1P1 (EDG1) and LPA1 (EDG2) phospholipid growth factor receptors. J. Biol. Chem.276, 49213–49220 (2001). Definition of the structural characteristics that determine whether S1P1 and LPA1 will bind their respective ligands. CASPubMed Google Scholar
Heise, C. E. et al. Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol. Pharmacol.60, 1173–1180 (2001). Identification of a composite LPA1/LPA3 receptor antagonist within vivoactivity. CASPubMed Google Scholar
Hooks, S. B. et al. Lysophosphatidic acid-induced mitogenesis is regulated by lipid phosphate phosphatases and is Edg-receptor independent. J. Biol. Chem.276, 4611–4621 (2001). CASPubMed Google Scholar
Hasegawa, Y. et al. Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J. Biol. Chem.278, 11962–11969 (2003). Identification of a stable agonist of LPA3 within vivoapplicability. CASPubMed Google Scholar
Bandoh, K. et al. Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure–activity relationship of cloned LPA receptors. FEBS Lett.478, 159–165 (2000). CASPubMed Google Scholar
Virag, T. et al. Fatty alcohol phosphates are subtype-selective agonists and antagonists of lysophosphatidic acid receptors. Mol. Pharmacol.63, 1032–1042 (2003). Rational drug design identifies novel receptor-selective agonists and antagonists. CASPubMed Google Scholar
Tigyi, G. & Miledi, R. Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromacytoma cells. J. Biol. Chem.267, 21360–21367 (1992). CASPubMed Google Scholar
Goetzl, E. J. et al. Gelsolin binding and cellular presentation of lysophosphatidic acid. J. Biol. Chem.275, 14573–14578 (2000). CASPubMed Google Scholar
Eichholtz, T., Jalink, K., Fahrenfort, I. & Moolenaar, W. H. The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem. J.291, 677–680 (1993). CASPubMedPubMed Central Google Scholar
Aoki, J. et al. Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J. Biol. Chem.277, 48737–48744 (2002). Describes the biochemical pathways regulating LPA production in plasma and serum. CASPubMed Google Scholar
Sano, T. et al. Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. J. Biol. Chem.277, 21197–21206 (2002). Elucidation of the mechanisms regulating the production of LPA in plasma and serum. CASPubMed Google Scholar
Imai, A., Furui, T., Tamaya, T. & Mills, G. B. A gonadotropin-releasing hormone-responsive phosphatase hydrolyses lysophosphatidic acid within the plasma membrane of ovarian cancer cells. J. Clin. Endocrinol. Metab.85, 3370–3375 (2000). CASPubMed Google Scholar
Xu, J. et al. Lipid phosphate phosphatase-1 and Ca2+ control lysophosphatidate signaling through EDG-2 receptors. J. Biol. Chem.275, 27520–27530 (2000). Strong evidence implicating LPPs in the degradation of LPA and in limiting LPA signalling. CASPubMed Google Scholar
Tokumura, A. et al. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J. Biol. Chem.277, 39436–39442 (2002a). CASPubMed Google Scholar
Umezu-Goto, M. et al. Autotaxin has lysophospholipase D activity leading to tumour cell growth and motility by lysophosphatidic acid production. J. Cell Biol.158, 227–233 (2002). Shows that the long sought after lysoPLD was actually autotaxin. Opened a whole new era in LPA function and potential therapeutic application. CASPubMedPubMed Central Google Scholar
Sciorra, V. A. & Morris, A. J. Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim. Biophys. Acta1582, 45–51 (2002). CASPubMed Google Scholar
Tanyi, J. L. et al. The human lipid phosphate phosphatase-3 decreases the growth, survival, and tumorigenesis of ovarian cancer cells: validation of the lysophosphatidic acid signaling cascade as a target for therapy in ovarian cancer. Cancer Res.63, 1073–1082 (2003). Genetic validation of LPA production and action as a therapeutic target in ovarian cancer. CASPubMed Google Scholar
Xu, Y. et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA280, 719–723 (1998). Provocative preliminary data indicating that measurement of lysophospholipids might allow for early diagnosis of cancer. CASPubMed Google Scholar
Baker, D. L. et al. Plasma lysophosphatidic acid concentration and ovarian cancer. JAMA287, 3081–3082 (2002). Careful analysis of the levels of LPA in plasma in ovarian cancer. Failed to confirm that plasma LPA levels are significantly increased in ovarian cancer patients. PubMed Google Scholar
Hama, K., Bandoh, K., Kakehi, Y., Aoki, J. & Arai, H. Lysophosphatidic acid (LPA) receptors are activated differentially by biological fluids: possible role of LPA-binding proteins in activation of LPA receptors. FEBS Lett.523, 187–192 (2002). CASPubMed Google Scholar
Gerrard, J. M. & Robinson, P. Identification of the molecular species of lysophosphatidic acid produced when platelets are stimulated by thrombin. Biochim. Biophys. Acta1001, 282–285 (1989). CASPubMed Google Scholar
Ginestra, A., Miceli, D., Dolo, V., Romano, F. M. & Vittorelli, M. L. Membrane vesicles in ovarian cancer fluids: a new potential marker. Anticancer Res19, 3439–3445 (1999). CASPubMed Google Scholar
Andre, F. et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet360, 295–305 (2002). CASPubMed Google Scholar
Stracke, M. L. et al. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J. Biol. Chem.267, 2524–2529 (1992). Identification of autotaxin as a motogen. Autotaxin would eventually be shown to be lysoPLD, the key enzyme regulating LPA production. CASPubMed Google Scholar
Murata, J. et al. cDNA cloning of the human tumour motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J. Biol. Chem.269, 30479–30484 (1994). CASPubMed Google Scholar
Nam, S. W. et al. Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res.61, 6938–6944 (2001). Describes the role of autotaxin in neovascularizationin vivo. CASPubMed Google Scholar
Koh, E. et al. Site-directed mutations in the tumor-associated cytokine, autotaxin, eliminate nucleotide phosphodiesterase, lysophospholipase D, and motogenic activities. Cancer Res.63, 2042–2045 (2003). CASPubMed Google Scholar
Clair, T. et al. Autotaxin hydrolyzes phospholipids to produce a migration stimulator, lysophosphatidic acid, or a migration inhibitor, sphingosine-1-phosphate. Cancer Res. (in the press).
Gijsbers, R., Aoki, J., Arai, H. & Bollen, M. The hydrolysis of lysophospholipids and nucleotides by autotaxin (NPP2) involves a single catalytic site. FEBS Lett.538, 60–64 (2003). CASPubMed Google Scholar
Bachner, D. et al. Bmp-2 downstream targets in mesenchymal development identified by subtractive cloning from recombinant mesenchymal progenitors (C3H10T1/2). Dev. Dyn.213, 398–411 (1998). CASPubMed Google Scholar
Tice, D. A. et al. Synergistic induction of tumour antigens by Wnt-1 signaling and retinoic acid revealed by gene expression profiling. J. Biol. Chem.277, 14329–14335 (2002). CASPubMed Google Scholar
Croset, M., Brossard, N., Polette, A. & Lagarde, M. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem. J.345, 61–67 (2000). CASPubMedPubMed Central Google Scholar
Nam, S. W. et al. Autotaxin (ATX), a potent tumour motogen, augments invasive and metastatic potential of ras-transformed cells. Oncogene19, 241–247 (2000). Describes the role of autotaxin in the metastatic cascadein vivo. CASPubMed Google Scholar
Yang, S. Y. et al. Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells. Clin. Exp. Metastasis19, 603–608 (2002). CASPubMed Google Scholar
Tanyi, J. L. et al. 2003b Role of decreased levels of LPP-1 in accumulation of lysophosphatidic acid (LPA) in ovarian cancer. Clinical Cancer Res. (in the press).
Xie, Y., Gibbs, T. C., Mukhin, Y. V. & Meier, K. E. Role for 18:1 lysophosphatidic acid as an autocrine mediator in prostate cancer cells. J. Biol. Chem.277, 32516–32526 (2002). Describes an autocrine LPA loop in the stimulation of prostate cancer cells. CASPubMed Google Scholar
Mills, G. B., May, C., McGill, M., Roifman, C. & Mellors, A. A putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization and mechanism of action. Cancer Res.48, 1066–1071 (1988). CASPubMed Google Scholar
Mills, G. B. et al. Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian cancer cells. J. Clin. Invest.86, 851–855 (1990). CASPubMedPubMed Central Google Scholar
Xu, Y. et al. Characterization of an ovarian cancer activating factor (OCAF) in ascites from ovarian cancer patients. Clin. Cancer Res.1, 1223–1232 (1995). Shows that ascites from ovarian cancer patients contain high levels of bioactive LPA, including unusual LPA isoforms. CASPubMed Google Scholar
Westermann, A. M. et al. Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann. Oncol.9, 437–442 (1998). CASPubMed Google Scholar
Xiao, Y. J. et al. Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal. Biochem.290, 302–313 (2001). CASPubMed Google Scholar
Shen, Z., Belinson, J., Morton, R. E., Xu, Y. & Xu, Y. Phorbol 12-myristate 13-acetate stimulates lysophosphatidic acid secretion from ovarian and cervical cancer cells but not from breast or leukemia cells. Gynecol. Oncol.71, 364–368 (1998). CASPubMed Google Scholar
Okita, M. Abnormal plasma lysophosphatidic acid level in ovarian cancer patients. Bulletin of Faculty of Health and Welfare Science, Okayama Prefectural University1, 29–35 (1994). Google Scholar
Sasagawa, T., Suzuki, K., Shiota, T., Kondo, T. & Okita, M. The significance of plasma lysophospholipids in patients with renal failure on hemodialysis. J. Nutr. Sci. Vitaminol.44, 809–818 (1998). CASPubMed Google Scholar
Sasagawa, T., Okita, M., Murakami, J., Kato, T. & Watanabe, A. Abnormal serum lysophospholipids in multiple myeloma patients. Lipids34, 17–21 (1999). CASPubMed Google Scholar
Okita, M., Gaudette, D. C., Mills, G. B. & Holub, B. J. Elevated levels and altered fatty acid composition of plasma lysophosphatidylcholine(lysoPC) in ovarian cancer patients. Int. J. Cancer71, 31–34 (1997). CASPubMed Google Scholar
Yoon, H. R., Kim, H. & Cho, S. H. Quantitative analysis of acyl-lysophosphatidic acid in plasma using negative ionization tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.788, 85–92 (2003). CASPubMed Google Scholar
Shen, Z. et al. Fatty acid composition of lysophosphatidic acid and lysophosphatidylinositol in plasma from patients with ovarian cancer and other gynecological diseases. Gynecol. Oncol.83, 25–30 (2001). CASPubMed Google Scholar
Tokumura, A. et al. Lack of significant differences in the corrected activity of lysophospholipase D, producer of phospholipid mediator lysophosphatidic acid, in incubated serum from women with and without ovarian tumors. Cancer94, 141–151 (2002). CASPubMed Google Scholar
Deng, W. et al. Lysophosphatidic acid protects and rescues intestinal epithelial cells from radiation- and chemotherapy-induced apoptosis. Gastroenterology123, 206–216 (2002). Indicates that compounds that mimic LPA could decrease toxicity associated with cancer therapy under appropriate conditions. CASPubMed Google Scholar