Polyak, K. et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet.20, 291–293 (1998). This work showed for the first time that the majority of colorectal cancer cells contain somatic and mostly homoplasmic mutations in their mtDNA. CASPubMed Google Scholar
Coller, H. A. et al. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nature Genet.28, 147–150 (2001). CASPubMed Google Scholar
Petros, J. A. et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl Acad. Sci. USA102, 719–724 (2005). CASPubMed Google Scholar
Shidara, Y. et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res.65, 1655–1663 (2005). CASPubMed Google Scholar
Yankovskaya, V. et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science299, 700–704 (2003). A comprehensive study of theE. coliSDH homologue structure and function. Based on the electron distribution in redox centres, this work makes important analogies to the structure and function of human SDH, and discusses the potential role of several SDH mutations in ROS generation. CASPubMed Google Scholar
Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet.69, 49–54 (2001). CASPubMedPubMed Central Google Scholar
Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science287, 848–851 (2000). The first discovery of a mitochondrial tumour-suppressor gene in HPGL. CASPubMed Google Scholar
Niemann, S. & Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genet.26, 268–270 (2000). CASPubMed Google Scholar
Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genet.30, 406–410 (2002). References 10–13 were the first studies to characterizeSDHB, SDHD, SDHCandFHas tumour suppressors in the hereditary syndromes PGL4, PGL1, PGL3 and HLRCC, respectively. CASPubMed Google Scholar
Launonen, V. et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc. Natl Acad. Sci. USA98, 3387–3392 (2001). CASPubMed Google Scholar
Baysal, B. E. On the association of succinate dehydrogenase mutations with hereditary paraganglioma. Trends Endocrinol. Metab.14, 453–459 (2003). CASPubMed Google Scholar
Eng, C., Kiuru, M., Fernandez, M. J. & Aaltonen, L. A. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nature Rev. Cancer3, 193–202 (2003). CAS Google Scholar
Pollard, P. J., Wortham, N. C. & Tomlinson, I. P. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann. Med.35, 632–639 (2003). CASPubMed Google Scholar
Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell7, 77–85 (2005). This work described the metabolic signalling mechanism showing that succinate can behave as an intracellular messenger that links SDH dysfunction to HIF induction. CASPubMed Google Scholar
Holme, E. et al. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A→G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet.52, 551–556 (1993). CASPubMedPubMed Central Google Scholar
Gimm, O., Armanios, M., Dziema, H., Neumann, H. P. & Eng, C. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res.60, 6822–6825 (2000). CASPubMed Google Scholar
Favier, J. et al. Hereditary paraganglioma/pheochromocytoma and inherited succinate dehydrogenase deficiency. Horm. Res.63, 171–179 (2005). CASPubMed Google Scholar
Tomitsuka, E., Goto, Y., Taniwaki, M. & Kita, K. Direct evidence for expression of type II flavoprotein subunit in human complex II (succinate–ubiquinone reductase). Biochem. Biophys. Res. Commun.311, 774–779 (2003). CASPubMed Google Scholar
Tomitsuka, E. et al. Direct evidence for two distinct forms of the flavoprotein subunit of human mitochondrial complex II (succinate–ubiquinone reductase). J. Biochem. (Tokyo)134, 191–195 (2003). CAS Google Scholar
Alam, N. A. et al. Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum. Mol. Genet.12, 1241–1252 (2003). CASPubMed Google Scholar
Taschner, P. E. et al. Nearly all hereditary paragangliomas in the Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer31, 274–281 (2001). CASPubMed Google Scholar
Niemann, S., Muller, U., Engelhardt, D. & Lohse, P. Autosomal dominant malignant and catecholamine-producing paraganglioma caused by a splice donor site mutation in SDHC. Hum. Genet.113, 92–94 (2003). PubMed Google Scholar
McWhinney, S. R. et al. Large germline deletions of mitochondrial complex II subunits SDHB and SDHD in hereditary paraganglioma. J. Clin. Endocrinol. Metab.89, 5694–5699 (2004). CASPubMed Google Scholar
Baysal, B. E. et al. An Alu-mediated partial SDHC deletion causes familial and sporadic paraganglioma. J. Med. Genet.41, 703–709 (2004). CASPubMedPubMed Central Google Scholar
Chan, I., Wong, T., Martinez-Mir, A., Christiano, A. M. & McGrath, J. A. Familial multiple cutaneous and uterine leiomyomas associated with papillary renal cell cancer. Clin. Exp. Dermatol.30, 75–78 (2005). CASPubMed Google Scholar
Toro, J. R. et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am. J. Hum. Genet.73, 95–106 (2003). CASPubMedPubMed Central Google Scholar
Douwes Dekker, P. B. et al. SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J. Pathol.201, 480–486 (2003). CASPubMed Google Scholar
Neumann, H. P. et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA292, 943–951 (2004). CASPubMed Google Scholar
Gimenez-Roqueplo, A. P. et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res.63, 5615–5621 (2003). CASPubMed Google Scholar
Maier-Woelfle, M. et al. A novel succinate dehydrogenase subunit B gene mutation, H132P, causes familial malignant sympathetic extraadrenal paragangliomas. J. Clin. Endocrinol. Metab.89, 362–367 (2004). CASPubMed Google Scholar
Rustin, P., Munnich, A. & Rotig, A. Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur. J. Hum. Genet.10, 289–291 (2002). CASPubMed Google Scholar
Vanharanta, S. et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am. J. Hum. Genet.74, 153–159 (2004). CASPubMed Google Scholar
Astuti, D. et al. Germline SDHD mutation in familial phaeochromocytoma. Lancet357, 1181–1182 (2001). CASPubMed Google Scholar
Baysal, B. E. et al. Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. J. Med. Genet.39, 178–183 (2002). CASPubMedPubMed Central Google Scholar
Neumann, H. P. et al. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med.346, 1459–1466 (2002). CASPubMed Google Scholar
Benn, D. E. et al. Novel succinate dehydrogenase subunit B (SDHB) mutations in familial phaeochromocytomas and paragangliomas, but an absence of somatic SDHB mutations in sporadic phaeochromocytomas. Oncogene22, 1358–1364 (2003). CASPubMed Google Scholar
Dannenberg, H. et al. Clinical characteristics of pheochromocytoma patients with germline mutations in SDHD. J. Clin. Oncol.23, 1894–1901 (2005). CASPubMed Google Scholar
Mhatre, A. N., Li, Y., Feng, L., Gasperin, A. & Lalwani, A. K. SDHB, SDHC, and SDHD mutation screen in sporadic and familial head and neck paragangliomas. Clin. Genet.66, 461–466 (2004). CASPubMed Google Scholar
Dannenberg, H. et al. Frequent germ-line succinate dehydrogenase subunit D gene mutations in patients with apparently sporadic parasympathetic paraganglioma. Clin. Cancer Res.8, 2061–2066 (2002). CASPubMed Google Scholar
Masuoka, J. et al. Germline SDHD mutation in paraganglioma of the spinal cord. Oncogene20, 5084–5086 (2001). CASPubMed Google Scholar
Barker, K. T. et al. Low frequency of somatic mutations in the FH/multiple cutaneous leiomyomatosis gene in sporadic leiomyosarcomas and uterine leiomyomas. Br. J. Cancer87, 446–448 (2002). CASPubMedPubMed Central Google Scholar
Kiuru, M. et al. Few FH mutations in sporadic counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer Res.62, 4554–4557 (2002). CASPubMed Google Scholar
Pollard, P. et al. Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome. J. Pathol.205, 41–49 (2005). Shows a phenotypic link betweenFHmutations and pseudo-hypoxia. PubMed Google Scholar
Lehtonen, R. et al. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am. J. Pathol.164, 17–22 (2004). CASPubMedPubMed Central Google Scholar
Kiuru, M. et al. No germline FH mutations in familial breast cancer patients. Eur. J. Hum. Genet.13, 506–509 (2005). CASPubMed Google Scholar
Morris, M. R. et al. Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma. J. Clin. Pathol.57, 706–711 (2004). CASPubMedPubMed Central Google Scholar
Newmeyer, D. D. & Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell112, 481–490 (2003). CAS Google Scholar
Karbowski, M. & Youle, R. J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ.10, 870–880 (2003). CASPubMed Google Scholar
Downward, J. Cell biology: metabolism meets death. Nature424, 896–897 (2003). CASPubMed Google Scholar
Ricci, J. E. et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell117, 773–786 (2004). CASPubMed Google Scholar
Albayrak, T. et al. The tumor suppressor cybL, a component of the respiratory chain, mediates apoptosis induction. Mol. Biol. Cell14, 3082–3096 (2003). CASPubMedPubMed Central Google Scholar
Ishii, T. et al. A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res.65, 203–209 (2005). CASPubMed Google Scholar
Lee, S. et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell8, 155–167 (2005). PubMed Google Scholar
Kim, J. W. & Dang, C. V. Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci.30, 142–150 (2005). CASPubMed Google Scholar
Majewski, N. et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell16, 819–830 (2004). CASPubMed Google Scholar
Storz, P. Reactive oxygen species in tumor progression. Front. Biosci.10, 1881–1896 (2005). CASPubMed Google Scholar
Semenza, G. L. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med.8 (Suppl.), 62–67 (2002). Google Scholar
Covello, K. L. & Simon, M. C. HIFs, hypoxia, and vascular development. Curr. Top. Dev. Biol.62, 37–54 (2004). CASPubMed Google Scholar
Yeo, H. & Roman, S. Pheochromocytoma and functional paraganglioma. Curr. Opin. Oncol.17, 13–18 (2005). PubMed Google Scholar
Lopez-Barneo, J., del Toro, R., Levitsky, K. L., Chiara, M. D. & Ortega-Saenz, P. Regulation of oxygen sensing by ion channels. J. Appl. Physiol.96, 1187–1195 (2004). CASPubMed Google Scholar
Astrom, K., Cohen, J. E., Willett-Brozick, J. E., Aston, C. E. & Baysal, B. E. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum. Genet.113, 228–237 (2003). Shows that low oxygen-tension (high altitude) increases the penetrance and the severity of tumours withSDHDmutations. This is an independent confirmation of the phenotypic link between SDH dysfunction and pseudo-hypoxia. PubMed Google Scholar
Baysal, B. E. Genomic imprinting and environment in hereditary paraganglioma. Am. J. Med. Genet. C. Semin. Med. Genet.129, 85–90 (2004). Google Scholar
Gimenez-Roqueplo, A. P. et al. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzy z-Roqueplo, A. P. et al. Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma. J. Clin. Endocrinol. Metab.87, 4771–4774 (2002). CASPubMed Google Scholar
Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet.14, 2231–2239 (2005). CASPubMed Google Scholar
Dahia, P. L. M. et al. A HIF1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genetics1, e8 (2005). PubMed Central Google Scholar
Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell8, 143–153 (2005). CASPubMed Google Scholar
Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol.22, 4991–5004 (2004). CASPubMed Google Scholar
Hoffman, M. A. et al. von Hippel–Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum. Mol. Genet.10, 1019–1027 (2001). CASPubMed Google Scholar
Clifford, S. C. et al. Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel–Lindau disease. Hum. Mol. Genet.10, 1029–1038 (2001). CASPubMed Google Scholar
Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer2, 38–47 (2002). CAS Google Scholar
Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer3, 721–732 (2003). CAS Google Scholar
Elstrom, R. L. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res.64, 3892–3899 (2004). CASPubMed Google Scholar
Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H. & Harris, A. L. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res.61, 6669–6673 (2001). CASPubMed Google Scholar
Erler, J. T. et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol. Cell. Biol.24, 2875–2889 (2004). CASPubMedPubMed Central Google Scholar
Blouw, B. et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell4, 133–146 (2003). CASPubMed Google Scholar
Safran, M. & Kaelin, W. G. Jr. HIF hydroxylation and the mammalian oxygen-sensing pathway. J. Clin. Invest.111, 779–783 (2003). CASPubMedPubMed Central Google Scholar
Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nature Rev. Mol. Cell Biol.5, 343–354 (2004). CAS Google Scholar
Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem.275, 25130–25138 (2000). CASPubMed Google Scholar
Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell5, 429–441 (2004). CASPubMed Google Scholar
Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell118, 781–794 (2004). Gives biochemical evidence that ROS (hydrogen peroxide) can inhibit HIF PHD activity. CASPubMed Google Scholar
Dalgard, C. L., Lu, H., Mohyeldin, A. & Verma, A. Endogenous 2-oxoacids differentially regulate expression of oxygen sensors. Biochem. J.380, 419–424 (2004). CASPubMedPubMed Central Google Scholar
Colombini, M., Blachly-Dyson, E. & Forte, M. VDAC, a channel in the outer mitochondrial membrane. Ion Channels4, 169–202 (1996). CASPubMed Google Scholar
Palmieri, F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch.447, 689–709 (2004). CASPubMed Google Scholar
Butow, R. A. & Avadhani, N. G. Mitochondrial signaling: the retrograde response. Mol. Cell14, 1–15 (2004). CASPubMed Google Scholar
Marx, J. Cell biology. How cells endure low oxygen. Science303, 1454–1456 (2004). CASPubMed Google Scholar
Kaelin, W. G. Jr. ROS: really involved in oxygen sensing. Cell. Metab.1, 357–358 (2005). CASPubMed Google Scholar
Hutton, J. J. Jr, Tappel, A. L. & Udenfriend, S. Cofactor and substrate requirements of collagen proline hydroxylase. Arch. Biochem. Biophys.118, 231–240 (1967). CAS Google Scholar
Myllyla, R., Tuderman, L. & Kivirikko, K. I. Mechanism of the prolyl hydroxylase reaction. 2. Kinetic analysis of the reaction sequence. Eur. J. Biochem.80, 349–357 (1977). CASPubMed Google Scholar
Badenhop, R. F. et al. Novel mutations in the SDHD gene in pedigrees with familial carotid body paraganglioma and sensorineural hearing loss. Genes Chromosomes Cancer31, 255–263 (2001). CASPubMed Google Scholar
van Schothorst, E. M. et al. Paragangliomas of the head and neck region show complete loss of heterozygosity at 11q22–q23 in chief cells and the flow-sorted DNA aneuploid fraction. Hum. Pathol.29, 1045–1049 (1998). CASPubMed Google Scholar
Hensen, E. F. et al. Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene23, 4076–4083 (2004). CASPubMed Google Scholar
Raha, S. & Robinson, B. H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci.25, 502–508 (2000). CASPubMed Google Scholar
Messner, K. R. & Imlay, J. A. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J. Biol. Chem.277, 42563–42571 (2002). CASPubMed Google Scholar
Paddenberg, R. et al. Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am. J. Physiol. Lung Cell. Mol. Physiol.284, L710–L719 (2003). CASPubMed Google Scholar