Infection, immune responses and the aetiology of childhood leukaemia (original) (raw)
International Incidence of Childhood Cancer (eds Parkin, D. M. et al.) (IARC Scientific Publications, Lyon, 1988).
International Incidence of Childhood Cancer Volume II (eds Parkin, D. M. et al.) (IARC Scientific Publications No. 144, Lyon, 1998).
Greaves, M. F. et al. Geographical distribution of acute lymphoblastic leukaemia subtypes: second report of the collaborative group study. Leukemia7, 27–34 (1993). CASPubMed Google Scholar
Pinkel, D. Lessons from 20 years of curative therapy of childhood acute leukaemia. Br. J. Cancer65, 148–153 (1992). CASPubMedPubMed Central Google Scholar
Kersey, J. H. Fifty years of studies of the biology and therapy of childhood leukemia. Blood90, 4243–4251 (1997). CASPubMed Google Scholar
Pui, C. -H., Relling, M. V. & Downing, J. R. Acute lymphoblastic leukemia. N. Engl. J. Med.350, 1535–1548 (2004). Comprehensive, recent summary of current understanding of the biological and clinical heterogeneity of childhood leukaemia. CASPubMed Google Scholar
Neglia, J. P. et al. Second neoplasms after acute lymphoblastic leukemia in childhood. N. Engl. J. Med.325, 1330–1336 (1991). CASPubMed Google Scholar
Hudson, M. in Childhood Leukemias (ed. Pui, C.-H.) 463–481 (Cambridge University Press, Cambridge, 1999). Google Scholar
Childhood Leukemias (ed. Pui, C.-H.) (Cambridge University Press, Cambridge, 1999).
Nesse, R. M. & Williams, G. C. Evolution and Healing. The New Science of Darwinian Medicine (Weidenfeld & Nicolson, 1995). Google Scholar
Greaves, M. Cancer. The Evolutionary Legacy (Oxford University Press, Oxford, 2000). Google Scholar
Stearns, S. C. & Ebert, D. Evolution in health and disease. Q. Rev. Biol.76, 417–432 (2001). CASPubMed Google Scholar
Linet, M. S. & Devesa, S. S. in Leukemia (eds Henderson, E. S., Lister, T. A. & Greaves, M. F.) 131–151 (Saunders, Philadelphia, 2002). Google Scholar
Ross, J. A., Davies, S. M., Potter, J. D. & Robison, L. L. Epidemiology of childhood leukemia, with a focus on infants. Epidemiol. Rev.16, 243–272 (1994). CASPubMed Google Scholar
Preston, D. L. et al. Cancer incidence in atomic bomb survivors. Part III: leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat. Res.137 (Suppl.), S68–S97 (1994). CASPubMed Google Scholar
Doll, R. & Wakeford, R. Risk of childhood cancer from fetal irradiation. Br. J. Radiol.70, 130–139 (1997). CASPubMed Google Scholar
Brenner, D. J. et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. Natl Acad. Sci. USA100, 13761–13766 (2003). Critical analysis of the contentious issue of risks from low-dose ionizing radiation. CASPubMed Google Scholar
Wakeford, R. The cancer epidemiology of radiation. Oncogene23, 6404–6428 (2004). CASPubMed Google Scholar
Wakeford, R. & Tawn, E. J. The risk to health from low doses of ionising radiation. Nuclear Future1, 107–114 (2005). CAS Google Scholar
UK Childhood Cancer Study Investigators. The United Kingdom Childhood Cancer Study of exposure to domestic sources of ionising radiation. 2: γ radiation. Br. J. Cancer86, 1727–1731 (2002).
UK Childhood Cancer Study Investigators. The United Kingdom Childhood Cancer Study of exposure to domestic sources of ionising radiation. I: radon gas. Br. J. Cancer86, 1721–1726 (2002).
UK Childhood Cancer Study Investigators. Exposure to power-frequency magnetic fields and the risk of childhood cancer. Lancet354, 1925–1931 (1999).
Coghill, R. W., Steward, J. & Philips, A. Extra low frequency electric and magnetic fields in the bedplace of children diagnosed with leukaemia: a case–control study. Eur. J. Cancer Prev.5, 153–158 (1996). CASPubMed Google Scholar
Fews, A. P., Henshaw, D. L., Wilding, R. J. & Keitch, P. A. Corona ions from powerlines and increased exposure to pollutant aerosols. Int. J. Radiat. Biol.75, 1523–1531 (1999). CASPubMed Google Scholar
UK Childhood Cancer Study Investigators. Exposure to power frequency electric fields and the risk of childhood cancer in the UK. Br. J. Cancer87, 1257–1266 (2002).
UK Childhood Cancer Study Investigators. Childhood cancer and residential proximity to power lines. Br. J. Cancer83, 1573–1580 (2000).
Greaves, M. Molecular genetics, natural history and the demise of childhood leukaemia. Eur. J. Cancer35, 173–185 (1999). CASPubMed Google Scholar
Taylor, G. M. & Birch, J. M. in Leukemia (eds Henderson, E. S., Lister, T. A. & Greaves, M. F.) 210–245 (WB Saunders, Philadelphia, 1996). Google Scholar
Savitz, D. A. & Andrews, K. W. Review of epidemiologic evidence on benzene and lymphatic and hematopoietic cancers. Am. J. Ind. Med.31, 287–295 (1997). CASPubMed Google Scholar
Smith, M. A., McCaffrey, R. P. & Karp, J. E. The secondary leukemias: challenges and research directions. J. Natl Cancer Inst.88, 407–418 (1996). CASPubMed Google Scholar
UK Childhood Cancer Study Investigators. The United Kingdom Childhood Cancer Study: objectives, materials and methods. Br. J. Cancer82, 1073–1102 (2000). Detailed description of the design of the largest case–control epidemiological study of possible causes of childhood cancer.
Greaves, M. F. Aetiology of acute leukaemia. Lancet349, 344–349 (1997). CASPubMed Google Scholar
Ross, J. A., Potter, J. D. & Robison, L. L. Infant leukemia, topoisomerase II inhibitors, and the MLL gene. J. Natl Cancer Inst.86, 1678–1680 (1994). CASPubMed Google Scholar
Alexander, F. E. et al. Transplacental chemical exposure and risk of infant leukaemia with MLL gene fusion. Cancer Res.61, 2542–2546 (2001). CASPubMed Google Scholar
Strick, R., Strissel, P. L., Borgers, S., Smith, S. L. & Rowley, J. D. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc. Natl Acad. Sci. USA97, 4790–4795 (2000). CASPubMed Google Scholar
Wiemels, J. L. et al. A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. Cancer Res.59, 4095–4099 (1999). CASPubMed Google Scholar
Smith, M. T. et al. Low NAD(P)H:quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children. Blood100, 4590–4593 (2002). CASPubMed Google Scholar
Draper, G. J., Kroll, M. E. & Stiller, C. A. Childhood cancer. Cancer Surv.19–20, 493–517 (1994). PubMed Google Scholar
Greaves, M. F. & Alexander, F. E. An infectious etiology for common acute lymphoblastic leukemia in childhood? Leukemia7, 349–360 (1993). CASPubMed Google Scholar
Ford, A. M. et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature363, 358–360 (1993). CASPubMed Google Scholar
Ford, A. M. et al. Fetal origins of the TEL–AML1 fusion gene in identical twins with leukemia. Proc. Natl Acad. Sci. USA95, 4584–4588 (1998). CASPubMed Google Scholar
Gale, K. B. et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc. Natl Acad. Sci. USA94, 13950–13954 (1997). CASPubMed Google Scholar
Wiemels, J. L. et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet354, 1499–1503 (1999). CASPubMed Google Scholar
Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl Acad. Sci. USA99, 8242–8247 (2002). Provides unambiguous evidence that pre-leukaemic clones with chromosomal translocations are generated prenatally at approximately 100-times the rate of overt leukaemia. CASPubMed Google Scholar
Greaves, M. F., Maia, A. T., Wiemels, J. L. & Ford, A. M. Leukemia in twins: lessons in natural history. Blood102, 2321–2333 (2003). Details the insights into the timing and development of childhood leukaemia — these insights were derived from molecular studies of concordant leukaemia in identical twins. CASPubMed Google Scholar
Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nature Rev. Cancer3, 639–649 (2003). CAS Google Scholar
Tsuzuki, S., Seto, M., Greaves, M. & Enver, T. Modelling first-hit functions of the t(12;21) TEL–AML1 translocation in mice. Proc. Natl Acad. Sci. USA101, 8443–8448 (2004). In vivomimicry in mice of the pre-leukaemic status initiated by TEL–AML1. CASPubMed Google Scholar
Fischer, M. et al. Defining the oncogenic function of the TEL–AML1 (ETV6–RUNX1) fusion protein in a mouse model. Oncogene24, 7579–7591 (2005). CASPubMed Google Scholar
Morrow, M., Horton, S., Kioussis, D., Brady, H. J. M. & Williams, O. TEL–AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity. Blood103, 3890–3896 (2004). In vivomimicry in murine cells of the pre-leukaemic status initiated by TEL–AML1. CASPubMed Google Scholar
Bernardin, F. et al. TEL–AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Res.62, 3904–3908 (2002). CASPubMed Google Scholar
Yuan, Y. et al. AML1–ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc. Natl Acad. Sci. USA98, 10398–10403 (2001). CASPubMed Google Scholar
Cooke, J. V. The incidence of acute leukemia in children. JAMA119, 547–550 (1942). Google Scholar
Poynton, F. J., Thursfield, H. & Paterson, D. The severe blood diseases of childhood: a series of observations from the Hospital for Sick Children, Great Ormond Street. Br. J. Child. Dis.XIX, 128–144 (1922). Google Scholar
Kellett, C. E. Acute myeloid leukaemia in one of identical twins. Arch. Dis. Childhood12, 239–252 (1937). CAS Google Scholar
Ward, G. The infective theory of acute leukaemia. Br. J. Child. Dis.14, 10–20 (1917). Google Scholar
Human T-Cell Leukemia/Lymphoma Virus. The Family of Human T-Lymphotropic Retroviruses: Their Role in Malignancies and Association With AIDS (eds Gallo, R. C., Essex, M. E. & Gross, L.) (Cold Spring Harbor Laboratory Press, New York, 1984).
Schulz, T. F. & Neil, J. C. in Leukemia (eds Henderson, E. S., Lister, T. A. & Greaves, M. F.) 200–225 (Saunders, Philadelphia, 2002). Google Scholar
Committee on Medical Aspects of Radiation in the Environment (COMARE). First Report. The Implications of the New Data on the Releases From Sellafield in the 1950s for the Conclusions of the Report on the Investigation of the Possible Increased Incidence of Cancer in West Cumbria (Department of Health, 1986).
Gardner, M. J. et al. Results of case–control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. Br. Med. J.300, 423–429 (1990). CAS Google Scholar
Kinlen, L. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish New Town with nuclear reprocessing sites in Britain. Lancetii, 1323–1327 (1988). First description of the 'population-mixing' hypothesis for childhood leukaemia. Google Scholar
Greaves, M. F. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia2, 120–125 (1988). First description of the 'delayed-infection' hypothesis for childhood leukaemia. Google Scholar
Wills-Karp, M., Santeliz, J. & Karp, C. L. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature Rev. Immunol.1, 69–75 (2001). CAS Google Scholar
Dunne, D. W. & Cooke, A. A worm's eye view of the immune system: consequences for evolution of human autoimmune disease. Nature Rev. Immunol.5, 420–426 (2005). CAS Google Scholar
Strachan, D. P. Family size, infection and atopy: the first decade of the 'hygiene hypothesis'. Thorax55, S2–S10 (2000). PubMedPubMed Central Google Scholar
Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites and the hygiene hypothesis. Science296, 490–494 (2002). CASPubMed Google Scholar
Kolb, H. & Elliott, R. B. Increasing incidence of IDDM a consequence of improved hygiene? Diabetologia37, 729–731 (1994). CASPubMed Google Scholar
Alvord, E. C. Jr et al. The multiple causes of multiple sclerosis: The importance of age of infections in childhood. J. Child Neurol.2, 313–321 (1987). PubMed Google Scholar
Gutensohn, N. & Cole, P. Childhood social environment and Hodgkin's disease. N. Engl. J. Med.304, 135–140 (1981). CASPubMed Google Scholar
Backett, E. M. Social patterns of antibody to poliovirus. Lanceti, 779–783 (1957). Google Scholar
Little, J. Epidemiology of Childhood Cancer (IARC Scientific Publications, Lyon, 1999). Google Scholar
McNally, R. J. Q. & Eden, T. O. B. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br. J. Haematol.127, 243–263 (2004). Most comprehensive, recent audit of epidemiological data on possible causal mechanisms involving infection in childhood leukaemia. PubMed Google Scholar
Heath, C. W. Jr & Hasterlik, R. J. Leukemia among children in a suburban community. Am. J. Med. 34, 796–812 (1963). First description of a time–space cluster for childhood leukaemia. Google Scholar
Steinmaus, C., Lu, M., Todd, R. L. & Smith, A. H. Probability estimates for the unique childhood leukemia cluster in Fallon, Nevada, and risks near other U. S. military aviation facilities. Environ. Health Perspect.112, 766–771 (2004). PubMedPubMed Central Google Scholar
Alexander, F. E. Space-time clustering of childhood acute lymphoblastic leukaemia: indirect evidence for a transmissible agents. Br. J. Cancer65, 589–592 (1992). CASPubMedPubMed Central Google Scholar
Petridou, E. et al. Space–time clustering of childhood leukaemia in Greece: evidence supporting a viral aetiology. Br. J. Cancer73, 1278–1283 (1996). CASPubMedPubMed Central Google Scholar
Kinlen, L. J. Epidemiological evidence for an infective basis in childhood leukaemia. Br. J. Cancer71, 1–5 (1995). CASPubMedPubMed Central Google Scholar
Kinlen, L. J., Clarke, K. & Hudson, C. Evidence from population mixing in British New Towns 1946–85 on an infective basis for childhood leukaemia. Lancet336, 577–582 (1990). CASPubMed Google Scholar
Kinlen, L. J. & John, S. M. Wartime evacuation of children and mortality from childhood leukaemia in England and Wales in 1945–49. Br. Med. J.309, 1197–1202 (1994). CAS Google Scholar
Kinlen, L. J. & Hudson, C. Childhood leukaemia and polio-myelitis in relation to military encampments in England and Wales in the period of national military service, 1950–63. Br. Med. J.303, 1357–1362 (1991). CAS Google Scholar
Kinlen, L. J. & Balkwill, A. Infective cause of childhood leukaemia and wartime population mixing in Orkney and Shetland, UK. Lancet357, 858 (2001).
Dickinson, H. O. & Parker, L. Quantifying the effect of population mixing on childhood leukaemia risk: the Seascale cluster. Br. J. Cancer81, 144–151 (1999). CASPubMedPubMed Central Google Scholar
Alexander, F. E. et al. Clustering of childhood leukaemia in Hong Kong: association with the childhood peak and common acute lymphoblastic leukaemia and with population mixing. Br. J. Cancer75, 457–463 (1997). CASPubMedPubMed Central Google Scholar
Kinlen, L. & Doll, R. Population mixing and childhood leukaemia: Fallon and other US clusters. Br. J. Cancer91, 1–3 (2004). CASPubMedPubMed Central Google Scholar
Smith, M. Considerations on a possible viral etiology for B-precursor acute lymphoblastic leukemia of childhood. J. Immunother.20, 89–100 (1997). CASPubMed Google Scholar
Istre, G. R., Conner, J. S., Broome, C. V., Hightower, A. & Hopkins, R. S. Risk factors for primary invasive Haemophilus influenzae disease: increased risk from day care attendance and school-aged household members. J. Pediatr.106, 190–195 (1985). CASPubMed Google Scholar
Adler, S. P. Molecular epidemiology of cytomegalovirus: viral transmission among children attending a day care center, their parents, and caretakers. J. Pediatr.112, 366–372 (1988). CASPubMed Google Scholar
Fleming, D. W., Cochi, S. L., Hightower, A. W. & Broome, C. V. Childhood upper respiratory tract infections: to what degree is incidence affected by day-care attendance? Pediatr.79, 55–60 (1987). CAS Google Scholar
Goodman, R. A., Osterholm, M. T., Granoff, D. M. & Pickering, L. K. Infectious diseases and child day care. Pediatr.74, 134–139 (1984). CAS Google Scholar
Krämer, U., Heinrich, J., Wjst, M. & Wichmann, H. -E. Age of entry to day nursery and allergy in later childhood. Lancet353, 450–454 (1999). PubMed Google Scholar
McKinney, P. A. et al. Early social mixing and childhood Type 1 diabetes mellitus: a case–control study in Yorkshire, UK. Diabet. Med.17, 236–242 (2000). CASPubMed Google Scholar
Gilham, C. et al. Day care in infancy and risk of childhood acute lymphoblastic leukaemia: findings from a UK case–control study. Br. Med. J.330, 1294–1297 (2005). Largest study to date providing evidence that social contacts in infancy can reduce risk of childhood ALL. CAS Google Scholar
Ma, X. et al. Daycare attendance and risk of childhood acute lymphoblastic leukaemia. Br. J. Cancer86, 1419–1424 (2002). Provides evidence that increasing levels of social contact in early life (through day-care) proportionally reduce the risk of childhood ALL. CASPubMedPubMed Central Google Scholar
Ma, X. et al. Ethnic difference in daycare attendance, early infections, and risk of childhood acute lymphoblastic leukemia. Cancer Epidemiol. Biomarkers Prev.14, 1928–1934 (2005). PubMed Google Scholar
Krynska, B. et al. Detection of human neurotropic JC virus DNA sequence and expression of the viral oncogenic protein in pediatric medulloblastomas. Proc. Natl Acad. Sci. USA96, 11519–11524 (1999). CASPubMed Google Scholar
McNally, R. J. Q. et al. An infectious aetiology for childhood brain tumours? Evidence from space–time clustering and seasonality analyses. Br. J. Cancer86, 1070–1077 (2002). CASPubMedPubMed Central Google Scholar
Petridou, E. et al. Age of exposure to infections and risk of childhood leukaemia. Br. Med. J.307, 774 (1993).
Infante-Rivard, C., Fortier, I. & Olsen, E. Markers of infection, breast-feeding and childhood acute lymphoblastic leukaemia. Br. J. Cancer83, 1559–1564 (2000). CASPubMedPubMed Central Google Scholar
Perrillat, F. et al. Day-care, early common infections and childhood acute leukaemia: a multicentre French case–control study. Br. J. Cancer86, 1064–1069 (2002). CASPubMedPubMed Central Google Scholar
Jourdan-Da Silva, N. et al. Infectious diseases in the first year of life, perinatal characteristics and childhood acute leukaemia. Br. J. Cancer90, 139–145 (2004). CASPubMedPubMed Central Google Scholar
Neglia, J. P. et al. Patterns of infection and day care utilization and risk factors of childhood acute lymphoblastic leukemia. Br. J. Cancer82, 234–240 (2000). CASPubMed Google Scholar
Dockerty, J. D., Draper, G., Vincent, T., Rowan, S. D. & Bunch, K. J. Case–control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int. J. Epidemiol.30, 1428–1437 (2001). CASPubMed Google Scholar
Ma, X. et al. Vaccination history and risk of childhood leukaemia. Int. J. Epidemiol.34, 1100–1109 (2005). PubMed Google Scholar
Groves, F. D., Sinha, D., Kayhty, H., Goedert, J. J. & Levine, P. H. Haemophilus influenzae type b serology in childhood leukaemia: a case–control study. Br. J. Cancer85, 337–340 (2001). CASPubMedPubMed Central Google Scholar
Auvinen, A., Hakulinen, T. & Groves, F. Haemophilus influenzae type B vaccination and risk of childhood leukaemia in a vaccine trial in Finland. Br. J. Cancer83, 956–958 (2000). CASPubMedPubMed Central Google Scholar
Stene, L. C. & Nafstad, P. Relation between occurrence of type 1 diabetes and asthma. Lancet357, 607–608 (2001). CASPubMed Google Scholar
Feltbower, R. G., McKinney, P. A., Greaves, M. F., Parslow, R. C. & Bodansky, H. J. International parallels in leukaemia and diabetes epidemiology. Arch. Dis. Childhood89, 54–56 (2004). CAS Google Scholar
Schüz, J., Morgan, G., Bö hler, E., Kaatsch, P. & Michaelis, J. Atopic disease and childhood acute lymphoblastic leukemia. Int. J. Cancer105, 255–260 (2003). PubMed Google Scholar
Wen, W. et al. Allergic disorders and the risk of childhood acute lymphoblastic leukemia (United States). Cancer Causes Control11, 303–307 (2000). CASPubMed Google Scholar
MacKenzie, J. et al. Infectious agents and childhood acute lymphoblastic leukemia: no evidence of molecular footprints of a transforming virus. Haematologica (in the press).
Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell7, 211–217 (2005). CASPubMed Google Scholar
Ford, A. M., Cardus, P. & Greaves, M. F. Modelling molecular consequences of leukaemia initiation by TEL–AML1 fusion. Blood104, 566 (2004).
Hiebert, S. W. et al. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol. Cell. Biol.16, 1349–1355 (1996). CASPubMedPubMed Central Google Scholar
Guidez, F. et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL–AML1 oncoprotein. Blood96, 2557–2561 (2000). CASPubMed Google Scholar
Cookson, W. The alliance of genes and environment in asthma and allergy. Nature402 (Suppl.), B5–B11 (1999). CASPubMed Google Scholar
Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Rev. Immunol.3, 133–146 (2003). CAS Google Scholar
Morahan, G. et al. Association of IL12B promoter polymorphism with severity of atopic and non-atopic asthma in children. Lancet360, 455–459 (2002). CASPubMed Google Scholar
Morahan, G. et al. Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nature Genet.27, 218–221 (2001). CASPubMed Google Scholar
Le Souëf, P. N., Goldblatt, J. & Lynch, N. R. Evolutionary adaptation of inflammatory immune responses in human beings. Lancet356, 242–244 (2000). PubMed Google Scholar
Greaves, M. F. Evolution, immune response, and cancer. Lancet356, 1034 (2000).
Taylor, G. M. et al. Genetic susceptibility to childhood common acute lymphoblastic leukaemia is associated with polymorphic peptide-binding pocket profiles in HLA-DPB1*0201. Hum. Mol. Genet.11, 1585–1597 (2002). CASPubMed Google Scholar
Dorak, M. T. et al. Unravelling an HLA-DR association in childhood acute lymphoblastic leukemia. Blood94, 694–700 (1999). CASPubMed Google Scholar
Sturniolo, T. et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nature Biotechnol.17, 555–561 (1999). CAS Google Scholar
Breatnach, F., Chessells, J. M. & Greaves, M. F. The aplastic presentation of childhood leukaemia: a feature of common-ALL. Br. J. Haematol.49, 387–393 (1981). CASPubMed Google Scholar
Hasle, H. et al. Transient pancytopenia preceding acute lymphoblastic leukemia (pre-ALL). Leukemia9, 605–608 (1995). CASPubMed Google Scholar
Heegaard, E. D., Madsen, H. O. & Schmiegelow, K. Transient pancytopenia preceding acute lymphoblastic leukaemia (pre-ALL) precipitated by parvovirus B19. Br. J. Haematol.114, 810–813 (2001). CASPubMed Google Scholar
Liang, R., Cheng, G., Wat, M. S., Ha, S. Y. & Chan, L. C. Childhood acute lymphoblastic leukaemia presenting with relapsing hypoplastic anaemia: progression of the same abnormal clone. Br. J. Haematol.83, 340–342 (1993). CASPubMed Google Scholar
Ishikawa, K. et al. Detection of neoplastic clone in the hypoplastic and recovery phases preceding acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor δ chain gene. J. Pediatr. Hematol. Oncol.17, 270–275 (1995). CASPubMed Google Scholar
Infectious Causes of Cancer (ed. Goedert, J. J.) (Humana Press, New Jersey, 2000).
Isaacson, P. G. & Du, M. -Q. MALT lymphoma: from morphology to molecules. Nature Rev. Cancer4, 644–653 (2004). CAS Google Scholar
Wotherspoon, A. C. et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet342, 575–577 (1993). CASPubMed Google Scholar
Hitzler, J. K. & Zipursky, A. Origins of leukaemia in children with Down syndrome. Nature Rev. Cancer5, 11–20 (2005). CAS Google Scholar
Dockerty, J. D. et al. Infections, vaccinations and the risk of childhood leukaemia. Br. J. Cancer80, 1483–1489 (1999). CASPubMedPubMed Central Google Scholar
Chan, L. C. et al. Is the timing of exposure to infection a major determinant of acute lymphoblastic leukaemia in Hong Kong? Paediatr. Perinatal Epidemiol.16, 154–165 (2002). Google Scholar
MacKenzie, J., Perry, J., Ford, A. M., Jarrett, R. F. & Greaves, M. JC and BK virus sequences are not detectable in leukaemic samples from children with common acute lymphoblastic leukaemia. Br. J. Cancer81, 898–899 (1999). CASPubMedPubMed Central Google Scholar
Smith, M. A. et al. Investigation of leukemia cells from children with common acute lymphoblastic leukemia for genomic sequences of the primate polyomaviruses JC virus, BK virus, and simian virus 40. Med. Pediatr. Oncol.33, 441–443 (1999). CASPubMed Google Scholar
Priftakis, P. et al. Human polyomavirus DNA is not detected in Guthrie cards (dried blood spots) from children who developed acute lymphoblastic leukemia. Med. Pediatr. Oncol.40, 219–223 (2003). PubMed Google Scholar
Isa, A., Priftakis, P., Broliden, K. & Gustafsson, B. Human parvovirus B19 DNA is not detected in Guthrie cards from children who have developed acute lymphoblastic leukemia. Pediatr. Blood Cancer42, 357–360 (2004). PubMed Google Scholar
Bogdanovic, G., Jernberg, A. G., Priftakis, P., Grillner, L. & Gustafsson, B. Human herpes virus 6 or Epstein–Barr virus were not detected in Guthrie cards from children who later developed leukaemia. Br. J. Cancer91, 913–915 (2004). CASPubMedPubMed Central Google Scholar
MacKenzie, J. et al. Screening for herpesvirus genomes in common acute lymphoblastic leukemia. Leukemia15, 415–421 (2001). CASPubMed Google Scholar
Bender, A. P. et al. No involvement of bovine leukemia virus in childhood acute lymphoblastic leukemia and non-Hodgkin's lymphoma. Cancer Res.48, 2919–2922 (1988). CASPubMed Google Scholar
Shiramizu, B., Yu, Q., Hu, N., Yanagihara, R. & Nerurkar, V. R. Investigation of TT virus in the etiology of pediatric acute lymphoblastic leukemia. Pediatr. Hematol. Oncol.19, 543–551 (2002). CASPubMed Google Scholar
Hoffjan, S. J. et al. Gene–environment interaction effects on the development of immune responses in the 1st year of life. Am. J. Hum. Genet.76, 696–704 (2005). CASPubMedPubMed Central Google Scholar