Goldstein, J. L., Anderson, R. G. & Brown, M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature279, 679–685 (1979). CASPubMed Google Scholar
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol.2, 107–117 (2001). CAS Google Scholar
Parton, R. G. & Simons, K. The multiple faces of caveolae. Nature Rev. Mol. Cell Biol.8, 185–194 (2007). CAS Google Scholar
Pelkmans, L., Burli, T., Zerial, M. & Helenius, A. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell118, 767–780 (2004). CASPubMed Google Scholar
Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F. & Wrana, J. L. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biol.5, 410–421 (2003). CASPubMed Google Scholar
Sigismund, S. et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl Acad. Sci. USA102, 2760–2765 (2005). CASPubMedPubMed Central Google Scholar
Llorente, A., Rapak, A., Schmid, S. L., van Deurs, B. & Sandvig, K. Expression of mutant dynamin inhibits toxicity and transport of endocytosed ricin to the Golgi apparatus. J. Cell Biol.140, 553–563 (1998). CASPubMedPubMed Central Google Scholar
Damke, H., Baba, T., van der Bliek, A. M. & Schmid, S. L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol.131, 69–80 (1995). CASPubMed Google Scholar
Lamaze, C. et al. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell7, 661–671 (2001). CASPubMed Google Scholar
Kumari, S. & Mayor, S. ARF1 is directly involved in dynamin-independent endocytosis. Nature Cell Biol.10, 30–41 (2008). CASPubMed Google Scholar
Innocenti, M. et al. Abi1 regulates the activity of N.-WASP and WAVE in distinct actin-based processes. Nature Cell Biol.7, 969–976 (2005). CASPubMed Google Scholar
Orth, J. D., Krueger, E. W., Weller, S. G. & McNiven, M. A. A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. Cancer Res.66, 3603–3610 (2006). CASPubMed Google Scholar
Lanzetti, L., Palamidessi, A., Areces, L., Scita, G. & Di Fiore, P. P. Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature429, 309–314 (2004). CASPubMed Google Scholar
Becker, K. F. et al. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res.54, 3845–3852 (1994). CASPubMed Google Scholar
Ohashi, M. et al. Human T-cell leukemia virus type 1 Tax oncoprotein induces and interacts with a multi-PDZ domain protein, MAGI-3. Virology320, 52–62 (2004). CASPubMed Google Scholar
Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biol.5, 287–293 (2003). CASPubMed Google Scholar
Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature452, 719–723 (2008). This important paper describes for the first time a requirement for clathrin in polarized sorting of proteins to the basolateral membrane. CASPubMedPubMed Central Google Scholar
Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biol.9, 1066–1073 (2007). CASPubMed Google Scholar
Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science302, 1227–1231 (2003). CASPubMed Google Scholar
Wells, C. D. et al. A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell125, 535–548 (2006). This interesting study identifies CDC42-associated proteins involved in the maintenance of TJs and trafficking of junctional proteins. CASPubMed Google Scholar
Terai, T., Nishimura, N., Kanda, I., Yasui, N. & Sasaki, T. JRAB/MICAL-L2 is a junctional Rab13-binding protein mediating the endocytic recycling of occludin. Mol. Biol. Cell17, 2465–2475 (2006). CASPubMedPubMed Central Google Scholar
Kamai, T. et al. Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin. Cancer Res.10, 4799–4805 (2004). CASPubMed Google Scholar
Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell116, 457–466 (2004). CASPubMed Google Scholar
Gangar, A., Rossi, G., Andreeva, A., Hales, R. & Brennwald, P. Structurally conserved interaction of Lgl family with SNAREs is critical to their cellular function. Curr. Biol.15, 1136–1142 (2005). CASPubMed Google Scholar
Zhang, X. et al. Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis. J. Cell Biol.170, 273–283 (2005). CASPubMedPubMed Central Google Scholar
Eder, A. M. et al. Atypical PKCι contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc. Natl Acad. Sci. USA102, 12519–12524 (2005). CASPubMedPubMed Central Google Scholar
Kuphal, S. et al. Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene25, 103–110 (2006). CASPubMed Google Scholar
Wang, Y. et al. Tyrosine phosphorylated Par3 regulates epithelial tight junction assembly promoted by EGFR signaling. EMBO J.25, 5058–5070 (2006). CASPubMedPubMed Central Google Scholar
Aranda, V. et al. Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nature Cell Biol.8, 1235–1245 (2006). This manuscript provides insights into the disruption of cell polarity by growth factor receptors, involving recruitment of the PAR6–aPKC complex to activated ERBB2. CASPubMed Google Scholar
Okuda, H. et al. The von Hippel–Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J. Biol. Chem.276, 43611–43617 (2001). CASPubMed Google Scholar
Lu, Z., Ghosh, S., Wang, Z. & Hunter, T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell4, 499–515 (2003). ArticleCASPubMed Google Scholar
Kimura, T., Sakisaka, T., Baba, T., Yamada, T. & Takai, Y. Involvement of the Ras–Ras-activated Rab5 guanine nucleotide exchange factor RIN2–Rab5 pathway in the hepatocyte growth factor-induced endocytosis of E-cadherin. J. Biol. Chem.281, 10598–10609 (2006). CASPubMed Google Scholar
Bryant, D. M. et al. EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin. J. Cell Sci.120, 1818–1828 (2007). CASPubMed Google Scholar
Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol.4, 222–231 (2002). An interesting paper that identified the E3 ligase of E-cadherin and described a role for ubiquitin-dependent downregulation of E-cadherin in the breakdown of cell–cell junctions. CASPubMed Google Scholar
Gavard, J. & Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biol.8, 1223–1234 (2006). CASPubMed Google Scholar
Toyoshima, M. et al. Inhibition of tumor growth and metastasis by depletion of vesicular sorting protein Hrs: its regulatory role on E-cadherin and β-catenin. Cancer Res.67, 5162–5171 (2007). CASPubMed Google Scholar
Gavard, J., Patel, V. & Gutkind, J. S. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev. Cell14, 25–36 (2008). CASPubMed Google Scholar
Morishige, M. et al. GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. Nature Cell Biol.10, 85–92 (2008). This key paper describes a direct interaction between the ARF6 GEF, GEP100, and activated EGFR, which is necessary for invasiveness of breast cancer cells. CASPubMed Google Scholar
Kachhap, S. K. et al. The N-Myc down regulated gene1 (NDRG1) is a Rab4a effector involved in vesicular recycling of E-cadherin. PLoS ONE2, e844 (2007). PubMedPubMed Central Google Scholar
Balzac, F. et al. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J. Cell Sci.118, 4765–4783 (2005). CASPubMed Google Scholar
Davis, M. A. & Reynolds, A. B. Blocked acinar development, E-cadherin reduction, and intraepithelial neoplasia upon ablation of p120-catenin in the mouse salivary gland. Dev. Cell10, 21–31 (2006). CASPubMed Google Scholar
Chen, X., Kojima, S., Borisy, G. G. & Green, K. J. p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions. J. Cell Biol.163, 547–557 (2003). CASPubMedPubMed Central Google Scholar
Xiao, K., Oas, R. G., Chiasson, C. M. & Kowalczyk, A. P. Role of p120-catenin in cadherin trafficking. Biochim. Biophys. Acta1773, 8–16 (2007). CASPubMed Google Scholar
Kallakury, B. V. et al. Decreased expression of catenins (α and β), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer92, 2786–2795 (2001). CASPubMed Google Scholar
Bellovin, D. I., Bates, R. C., Muzikansky, A., Rimm, D. L. & Mercurio, A. M. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res.65, 10938–10945 (2005). CASPubMed Google Scholar
Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nature Genet.39, 503–512 (2007). CASPubMed Google Scholar
Wiley, H. S., Shvartsman, S. Y. & Lauffenburger, D. A. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol.13, 43–50 (2003). CASPubMed Google Scholar
Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol.2, 127–137 (2001). CAS Google Scholar
Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell4, 1029–1040 (1999). CASPubMed Google Scholar
Ebner, R. & Derynck, R. Epidermal growth factor and transforming growth factor-α: differential intracellular routing and processing of ligand-receptor complexes. Cell Reg.2, 599–612 (1991). CAS Google Scholar
Longva, K. E. et al. Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J. Cell Biol.156, 843–854 (2002). CASPubMedPubMed Central Google Scholar
Belleudi, F. et al. Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways. Traffic8, 1854–1872 (2007). CASPubMed Google Scholar
Nicholson, R. I., Gee, J. M. & Harper, M. E. EGFR and cancer prognosis. Eur. J. Cancer37 (Suppl. 4), S9–S15 (2001). CASPubMed Google Scholar
French, A. R., Sudlow, G. P., Wiley, H. S. & Lauffenburger, D. A. Postendocytic trafficking of epidermal growth factor-receptor complexes is mediated through saturable and specific endosomal interactions. J. Biol. Chem.269, 15749–15755 (1994). CASPubMed Google Scholar
Lenferink, A. E. et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J.17, 3385–3397 (1998). CASPubMedPubMed Central Google Scholar
Worthylake, R., Opresko, L. K. & Wiley, H. S. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J. Biol. Chem.274, 8865–8874 (1999). CASPubMed Google Scholar
Hommelgaard, A. M., Lerdrup, M. & van Deurs, B. Association with membrane protrusions makes ErbB2 an internalization-resistant receptor. Mol. Biol. Cell15, 1557–1567 (2004). CASPubMedPubMed Central Google Scholar
Citri, A. et al. Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep.5, 1165–1170 (2004). CASPubMedPubMed Central Google Scholar
Lerdrup, M., Hommelgaard, A. M., Grandal, M. & van Deurs, B. Geldanamycin stimulates internalization of ErbB2 in a proteasome-dependent way. J. Cell Sci.119, 85–95 (2006). CASPubMed Google Scholar
Tikhomirov, O. & Carpenter, G. Geldanamycin induces ErbB-2 degradation by proteolytic fragmentation. J. Biol. Chem.275, 26625–26631 (2000). CASPubMed Google Scholar
Ross, J. S. et al. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist8, 307–325 (2003). CASPubMed Google Scholar
Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science286, 309–312 (1999). CASPubMed Google Scholar
Oved, S. et al. Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J. Biol. Chem.281, 21640–21651 (2006). CASPubMed Google Scholar
Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem.274, 31707–31712 (1999). CASPubMed Google Scholar
Langdon, W. Y., Hartley, J. W., Klinken, S. P., Ruscetti, S. K. & Morse, H. C. 3rd. v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc. Natl. Acad. Sci. USA86, 1168–1172 (1989). CASPubMedPubMed Central Google Scholar
Andoniou, C. E., Thien, C. B. & Langdon, W. Y. Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene. EMBO J.13, 4515–4523 (1994). CASPubMedPubMed Central Google Scholar
Sargin, B. et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood110, 1004–1012 (2007). First description of a Cbl mutation in human cancer, correlating with impaired downregulation of the RTK FLT3. CASPubMed Google Scholar
Hoeller, D. et al. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol. Cell26, 891–898 (2007). CASPubMed Google Scholar
Grandal, M. V. et al. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis28, 1408–1417 (2007). CASPubMed Google Scholar
Han, W., Zhang, T., Yu, H., Foulke, J. G. & Tang, C. K. Hypophosphorylation of residue Y1045 leads to defective downregulation of EGFRvIII. Cancer Biol. Ther.5, 1361–1368 (2006). CASPubMed Google Scholar
Shtiegman, K. et al. Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene26, 6968–6978 (2007). CASPubMed Google Scholar
Yang, S. et al. Association with HSP90 inhibits Cbl-mediated down-regulation of mutant epidermal growth factor receptors. Cancer Res.66, 6990–6997 (2006). CASPubMed Google Scholar
Khan, E. M., Lanir, R., Danielson, A. R. & Goldkorn, T. Epidermal growth factor receptor exposed to cigarette smoke is aberrantly activated and undergoes perinuclear trafficking. FASEB J.22, 910–917 (2008). CASPubMed Google Scholar
Abella, J. V. et al. Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol. Cell. Biol.25, 9632–9645 (2005). CASPubMedPubMed Central Google Scholar
Zeng, S., Xu, Z., Lipkowitz, S. & Longley, J. B. Regulation of stem cell factor receptor signaling by Cbl family proteins (Cbl-b/c-Cbl). Blood105, 226–232 (2005). CASPubMed Google Scholar
Bao, J., Gur, G. & Yarden, Y. Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc. Natl Acad. Sci. USA100, 2438–2443 (2003). CASPubMedPubMed Central Google Scholar
Howlett, C. J. & Robbins, S. M. Membrane-anchored Cbl suppresses Hck protein-tyrosine kinase mediated cellular transformation. Oncogene21, 1707–1716 (2002). CASPubMed Google Scholar
Yokouchi, M. et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J. Biol. Chem.276, 35185–35193 (2001). CASPubMed Google Scholar
Tice, D. A., Biscardi, J. S., Nickles, A. L. & Parsons, S. J. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc. Natl Acad. Sci. USA96, 1415–1420 (1999). CASPubMedPubMed Central Google Scholar
Courbard, J. R. et al. Interaction between two ubiquitin-protein isopeptide ligases of different classes, CBLC and AIP4/ITCH. J. Biol. Chem.277, 45267–45275 (2002). CASPubMed Google Scholar
Magnifico, A. et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J. Biol. Chem.278, 43169–43177 (2003). CASPubMed Google Scholar
Wu, W. J., Tu, S. & Cerione, R. A. Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell114, 715–725 (2003). CASPubMed Google Scholar
Fritz, G., Brachetti, C., Bahlmann, F., Schmidt, M. & Kaina, B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br. J. Cancer87, 635–644 (2002). CASPubMedPubMed Central Google Scholar
Hall, A. B. et al. hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr. Biol.13, 308–314 (2003). CASPubMed Google Scholar
Rubin, C. et al. Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr. Biol.13, 297–307 (2003). CASPubMed Google Scholar
Lo, T. L. et al. The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Res.64, 6127–6136 (2004). CASPubMed Google Scholar
Kwabi-Addo, B. et al. The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res.64, 4728–4735 (2004). CASPubMed Google Scholar
Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biol.4, 691–698 (2002). CASPubMed Google Scholar
Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell115, 475–487 (2003). CASPubMed Google Scholar
Legendre-Guillemin, V. et al. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J. Biol. Chem.277, 19897–19904 (2002). CASPubMed Google Scholar
Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell15, 1666–1679 (2004). CASPubMedPubMed Central Google Scholar
Rao, D. S. et al. Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival. J. Clin. Invest.110, 351–360 (2002). CASPubMedPubMed Central Google Scholar
Bradley, S. V. et al. Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor. Cancer Res.67, 3609–3615 (2007). CASPubMed Google Scholar
Rao, D. S. et al. Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells. Cancer Cell3, 471–482 (2003). CASPubMed Google Scholar
Timpson, P., Lynch, D. K., Schramek, D., Walker, F. & Daly, R. J. Cortactin overexpression inhibits ligand-induced down-regulation of the epidermal growth factor receptor. Cancer Res.65, 3273–3280 (2005). CASPubMed Google Scholar
Bankaitis, V. A., Johnson, L. M. & Emr, S. D. Isolation of yeast mutants defective in protein targeting to the vacuole. Proc. Natl Acad. Sci. USA83, 9075–9079 (1986). CASPubMedPubMed Central Google Scholar
Rothman, J. H., Hunter, C. P., Valls, L. A. & Stevens, T. H. Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene. Proc. Natl Acad. Sci. USA83, 3248–3252 (1986). CASPubMedPubMed Central Google Scholar
Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell3, 1389–1402 (1992). CASPubMedPubMed Central Google Scholar
Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol.3, 893–905 (2002). CAS Google Scholar
Bache, K. G. et al. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol. Biol. Cell17, 2513–2523 (2006). CASPubMedPubMed Central Google Scholar
Doyotte, A., Russell, M. R., Hopkins, C. R. & Woodman, P. G. Depletion of TSG101 forms a mammalian 'Class E' compartment: a multicisternal early endosome with multiple sorting defects. J. Cell Sci.118, 3003–3017 (2005). CASPubMed Google Scholar
Moberg, K. H., Schelble, S., Burdick, S. K. & Hariharan, I. K. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev. Cell9, 699–710 (2005). CASPubMed Google Scholar
Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell9, 711–720 (2005). CASPubMed Google Scholar
Vaccari, T. & Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell9, 687–698 (2005). CASPubMed Google Scholar
Li, L. & Cohen, S. N. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell85, 319–329 (1996). CASPubMed Google Scholar
Wagner, K. U. et al. Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues. Mol. Cell Biol.23, 150–162 (2003). CASPubMedPubMed Central Google Scholar
Carstens, M. J., Krempler, A., Triplett, A. A., Van Lohuizen, M. & Wagner, K. U. Cell cycle arrest and cell death are controlled by p53-dependent and p53-independent mechanisms in Tsg101-deficient cells. J. Biol. Chem.279, 35984–35994 (2004). CASPubMed Google Scholar
Zhu, G. et al. Reduction of TSG101 protein has a negative impact on tumor cell growth. Int. J. Cancer109, 541–547 (2004). CASPubMed Google Scholar
Oh, K. B., Stanton, M. J., West, W. W., Todd, G. L. & Wagner, K. U. Tsg101 is upregulated in a subset of invasive human breast cancers and its targeted overexpression in transgenic mice reveals weak oncogenic properties for mammary cancer initiation. Oncogene26, 5950–5959 (2007). CASPubMed Google Scholar
Xu, Z., Liang, L., Wang, H., Li, T. & Zhao, M. HCRP1, a novel gene that is downregulated in hepatocellular carcinoma, encodes a growth-inhibitory protein. Biochem. Biophys. Res. Commun.311, 1057–1066 (2003). CASPubMed Google Scholar
Jones, M. C., Caswell, P. T. & Norman, J. C. Endocytic recycling pathways: emerging regulators of cell migration. Curr. Opin. Cell Biol.18, 549–557 (2006). CASPubMed Google Scholar
Panetti, T. S. & McKeown-Longo, P. J. The αvβ5 integrin receptor regulates receptor-mediated endocytosis of vitronectin. J. Biol. Chem.268, 11492–11495 (1993). CASPubMed Google Scholar
Rappoport, J. Z. & Simon, S. M. Real-time analysis of clathrin-mediated endocytosis during cell migration. J. Cell Sci.116, 847–855 (2003). CASPubMed Google Scholar
Roberts, M., Barry, S., Woods, A., van der Sluijs, P. & Norman, J. PDGF-regulated rab4-dependent recycling of αvβ3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr. Biol.11, 1392–1402 (2001). CASPubMed Google Scholar
Gustavsson, A. et al. Role of the β1-integrin cytoplasmic tail in mediating invasin-promoted internalization of Yersinia. J. Cell Sci.115, 669–2678 (2002). Google Scholar
Sanlioglu, S. et al. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J. Virol.74, 9184–9196 (2000). CASPubMedPubMed Central Google Scholar
Ezratty, E. J., Partridge, M. A. & Gundersen, G. G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nature Cell Biol.7, 581–590 (2005). An important study that provides novel insights into the regulation of cell migration by microtubule-dependent dissolution of focal adhesions. CASPubMed Google Scholar
Wu, X., Gan, B., Yoo, Y. & Guan, J. L. FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1–MMP and promotes ECM degradation. Dev. Cell9, 185–196 (2005). CASPubMed Google Scholar
Nishimura, T. & Kaibuchi, K. Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev. Cell13, 15–28 (2007). This paper shows that an endocytic adaptor, NUMB, has an important role in polarized cell migration through direct binding to β1 and β3 integrins and regulating integrin trafficking. CASPubMed Google Scholar
Upla, P. et al. Clustering induces a lateral redistribution of α2β1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol. Biol. Cell15, 625–636 (2004). CASPubMedPubMed Central Google Scholar
Caswell, P. & Norman, J. Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol.18, 257–263 (2008). CASPubMed Google Scholar
Ivaska, J. et al. PKCɛ-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J.24, 3834–3845 (2005). CASPubMedPubMed Central Google Scholar
Li, J. et al. An ACAP1-containing clathrin coat complex for endocytic recycling. J. Cell Biol.178, 453–464 (2007). CASPubMedPubMed Central Google Scholar
Powelka, A. M. et al. Stimulation-dependent recycling of integrin β1 regulated by ARF6 and Rab11. Traffic5, 20–36 (2004). CASPubMed Google Scholar
Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of β1-integrins. J. Cell Biol.173, 767–780 (2006). CASPubMedPubMed Central Google Scholar
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell110, 673–687 (2002). CASPubMed Google Scholar
Eliceiri, B. P. & Cheresh, D. A. Adhesion events in angiogenesis. Curr. Opin. Cell Biol.13, 563–568 (2001). CASPubMed Google Scholar
Bates, R. C. et al. Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest.115, 339–347 (2005). CASPubMedPubMed Central Google Scholar
Hazelbag, S. et al. Overexpression of the αvβ6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J. Pathol.212, 316–324 (2007). CASPubMed Google Scholar
Ramsay, A. G. et al. HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin αvβ6. Cancer Res.67, 5275–5284 (2007). CASPubMed Google Scholar
Cheng, K. W. et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature Med.10, 1251–1256 (2004). This manuscript demonstrates frequent amplification of RAB25 in advanced ovarian and breast cancers, as well as a crucial role for RAB25 in tumorigenesis. CASPubMed Google Scholar
De Craene, B. et al. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res.65, 6237–6244 (2005). CASPubMed Google Scholar
Caswell, P. T. et al. Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell13, 496–510 (2007). CASPubMed Google Scholar
Garcia, M. J. et al. A 1 Mb minimal amplicon at 8p11–12 in breast cancer identifies new candidate oncogenes. Oncogene24, 5235–5245 (2005). CASPubMed Google Scholar
Brown, J. M. The hypoxic cell: a target for selective cancer therapy — eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res.59, 5863–5870 (1999). CASPubMed Google Scholar
Yoon, S. O., Shin, S. & Mercurio, A. M. Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the α6β4 integrin. Cancer Res.65, 2761–2769 (2005). A report that links hypoxia to cell invasiveness through integrin trafficking, involving stabilized, detyrosinated microtubules and Rab11. CASPubMed Google Scholar
Mialhe, A. et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res.61, 5024–5027 (2001). CASPubMed Google Scholar
Cheng, K. W., Lahad, J. P., Gray, J. W. & Mills, G. B. Emerging role of RAB GTPases in cancer and human disease. Cancer Res.65, 2516–2519 (2005). CASPubMed Google Scholar
Mor, O. et al. Molecular analysis of transitional cell carcinoma using cDNA microarray. Oncogene22, 7702–7710 (2003). CASPubMed Google Scholar
Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell134, 135–147 (2008). This study describes an interesting interplay between endocytosis and cell motility involving RAB5A-dependent activation of Rac in endosomes, and Rac recycling to regulate localized actin remodeling. CASPubMed Google Scholar
Raucher, D. et al. Phosphatidylinositol 4, 5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell100, 221–228 (2000). CASPubMed Google Scholar
van Rheenen, J. et al. EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. J. Cell Biol.179, 1247–1259 (2007). CASPubMedPubMed Central Google Scholar
Malecz, N. et al. Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr. Biol.10, 1383–1386 (2000). CASPubMed Google Scholar
Le, Q. T., Denko, N. C. & Giaccia, A. J. Hypoxic gene expression and metastasis. Cancer Metastasis Rev.23, 293–310 (2004). CASPubMed Google Scholar
Winograd-Katz, S. E. & Levitzki, A. Cisplatin induces PKB/Akt activation and p38MAPK phosphorylation of the EGF receptor. Oncogene25, 7381–7390 (2006). CASPubMed Google Scholar
Zwang, Y. & Yarden, Y. p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy. EMBO J.25, 4195–4206 (2006). CASPubMedPubMed Central Google Scholar
Mace, G., Miaczynska, M., Zerial, M. & Nebreda, A. R. Phosphorylation of EEA1 by p38 MAP kinase regulates mu opioid receptor endocytosis. EMBO J.24, 3235–3246 (2005). CASPubMedPubMed Central Google Scholar
Cavalli, V. et al. The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol. Cell7, 421–432 (2001). CASPubMed Google Scholar
Ben-Kasus, T., Schechter, B., Sela, M. & Yarden, Y. Cancer therapeutic antibodies come of age: targeting minimal residual disease. Mol. Oncol.1, 42–54 (2007). CASPubMedPubMed Central Google Scholar
Friedman, L. M. et al. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc. Natl. Acad. Sci. USA102, 1915–1920 (2005). CASPubMedPubMed Central Google Scholar
Baselga, J. et al. Objective response rate in a phase II multicenter trial of pertuzumab (P), a HER2 dimerization inhibiting monoclonal antibody, in combination with trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC) which has progressed during treatment with, T. J. Clin. Oncol. 2007 ASCO Annu. Meet. Proc. Pt I25, 1004 (2007). Google Scholar
Di Guglielmo, G. M., Baass, P. C., Ou, W. J., Posner, B. I. & Bergeron, J. J. Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J.13, 4269–4277 (1994). CASPubMedPubMed Central Google Scholar
Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science274, 2086–2088 (1996). CASPubMed Google Scholar
Teis, D., Wunderlich, W. & Huber, L. A. Localization of the MP1–MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev. Cell3, 803–814 (2002). CASPubMed Google Scholar
Pennock, S. & Wang, Z. Stimulation of cell proliferation by endosomal epidermal growth factor receptor as revealed through two distinct phases of signaling. Mol. Cell Biol.23, 5803–5815 (2003). CASPubMedPubMed Central Google Scholar
Ni, C. Y., Murphy, M. P., Golde, T. E. & Carpenter, G. γ-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science294, 2179–2181 (2001). CASPubMed Google Scholar
Sardi, S. P., Murtie, J., Koirala, S., Patten, B. A. & Corfas, G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell127, 185–197 (2006). CASPubMed Google Scholar
Williams, C. C. et al. The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. J. Cell Biol.167, 469–478 (2004). CASPubMedPubMed Central Google Scholar
Lo, H. W. et al. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin β1 and CRM1. J. Cell Biochem.98, 1570–1583 (2006). CASPubMed Google Scholar
Wang, S. C. et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell6, 251–261 (2004). CASPubMed Google Scholar
Ristimaki, A. et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res.62, 632–635 (2002). CASPubMed Google Scholar
Enari, M., Ohmori, K., Kitabayashi, I. & Taya, Y. Requirement of clathrin heavy chain for p53-mediated transcription. Genes Dev.20, 1087–1099 (2006). CASPubMedPubMed Central Google Scholar
Miaczynska, M. et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell116, 445–456 (2004). This paper uncovers a novel mitogenic signalling pathway in which RAB5-activated APPL proteins translocate from endosomes to the nucleus and interact with proteins involved in nucleosome remodeling. CASPubMed Google Scholar
Abbas, S., Rotmans, G., Lowenberg, B. & Valk, P. J. Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias. Haematologica 12 Aug 2008 (doi:10.3324/haematol.13187). CASPubMed Google Scholar
Caligiuri, M. A. et al. Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood110, 1022–1024 (2007). CASPubMedPubMed Central Google Scholar
Ross, T. S., Bernard, O. A., Berger, R. & Gilliland, D. G. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor β receptor (PDGFβR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood91, 4419–4426 (1998). CASPubMed Google Scholar
Ahn, S. J. et al. Overexpression of βPix-a in human breast cancer tissues. Cancer Lett.193, 99–107 (2003). CASPubMed Google Scholar
Buday, L. & Downward, J. Roles of cortactin in tumor pathogenesis. Biochim. Biophys. Acta1775, 263–273 (2007). CASPubMed Google Scholar
Bridge, J. A. et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am. J. Pathol.159, 411–415 (2001). CASPubMedPubMed Central Google Scholar
Argani, P. et al. A novel CLTC–TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene22, 5374–5378 (2003). CASPubMed Google Scholar
Dreyling, M. H. et al. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc. Natl Acad. Sci. USA93, 4804–4809 (1996). CASPubMedPubMed Central Google Scholar
So, C. W., Lin, M., Ayton, P. M., Chen, E. H. & Cleary, M. L. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell4, 99–110 (2003). CASPubMed Google Scholar
Liu, H. et al. Functional contribution of EEN to leukemogenic transformation by MLL–EEN fusion protein. Oncogene23, 3385–3394 (2004). CASPubMed Google Scholar
Lo, T. L. et al. Sprouty and cancer: the first terms report. Cancer Lett.242, 141–150 (2006). CASPubMed Google Scholar
Karam, J. A. et al. Decreased DOC-2/DAB2 expression in urothelial carcinoma of the bladder. Clin. Cancer Res.13, 4400–4406 (2007). CASPubMed Google Scholar
Colaluca, I. et al. NUMB controls p53 tumour suppressor activity. Nature451, 76–80 (2008). CASPubMed Google Scholar
Bandyopadhyay, S. et al. The Drg-1 gene suppresses tumor metastasis in prostate cancer. Cancer Res.63, 1731–1736 (2003). CASPubMed Google Scholar
van der Horst, E. H. et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc. Natl Acad. Sci. USA102, 15901–15906 (2005). CASPubMedPubMed Central Google Scholar
Fang, C. M. & Xu, Y. H. Down-regulated expression of atypical PKC-binding domain deleted asip isoforms in human hepatocellular carcinomas. Cell Res.11, 223–229 (2001). CASPubMed Google Scholar
Shatz, M. & Liscovitch, M. Caveolin-1: a tumor-promoting role in human cancer. Int. J. Radiat. Biol.84, 177–189 (2008). CASPubMed Google Scholar