Histone methyltransferases, diet nutrients and tumour suppressors (original) (raw)
Doll, R. & Peto, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl Cancer Inst.66, 1191–1308 (1981). CASPubMed Google Scholar
Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301, 89–92 (1983). CASPubMed Google Scholar
Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet.16, 168–174 (2000). CASPubMed Google Scholar
Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature Genet.21, 163–167 (1999). ArticleCASPubMed Google Scholar
Jenuwein, T. & Allis, C. D. Translating the histone code. Science293, 1074–1080 (2001). CASPubMed Google Scholar
Jiang, G.-L. & Huang, S. The yin–yang of PR-domain family genes in tumorigenesis. Histol. Histopathol.15, 109–117 (2000). CASPubMed Google Scholar
Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J.13, 3822–3831 (1994). CASPubMedPubMed Central Google Scholar
Jones, R. S. & Gelbart, W. M. The Drosophila Polycomb-group gene Enhancer of zeste contains a region with sequence similarity to trithorax. Mol. Cell. Biol.13, 6357–6366 (1993). CASPubMedPubMed Central Google Scholar
Buyse, I. M., Shao, G. & Huang, S. The retinoblastoma protein binds to RIZ, a zinc finger protein that shares an epitope with the adenovirus E1A protein. Proc. Natl Acad. Sci. USA92, 4467–4471 (1995). CASPubMedPubMed Central Google Scholar
Huang, S. Blimp-1 is the murine homolog of the human transcriptional repressor PRDI–BF1. Cell78, 9 (1994). CASPubMed Google Scholar
Huang, S., Shao, G. & Liu, L. The PR domain of the Rb-binding zinc finger protein RIZ1 is a protein binding interface and is related to the SET domain functioning in chromatin-mediated gene expression. J. Biol. Chem.273, 15933–15940 (1998). CASPubMed Google Scholar
Cui, X. et al. Association of SET domain and myotubularin-related proteins modulates growth control. Nature Genet.18, 331–337 (1998). CASPubMed Google Scholar
Cardoso, C. et al. Specific interaction between the XNP/ATR-X gene product and the SET domain of the human EZH2 protein. Hum. Mol. Genet.7, 679–684 (1998). CASPubMed Google Scholar
Rozenblatt-Rosen, O. et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl Acad. Sci. USA95, 4152–4157 (1998). CASPubMedPubMed Central Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000). CASPubMed Google Scholar
Fears, S. et al. Intergenic splicing of MDS1 and EVII occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc. Natl Acad. Sci. USA93, 1642–1647 (1996). CASPubMedPubMed Central Google Scholar
Steele-Perkins, G. et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev.15, 2250–2262 (2001). CASPubMedPubMed Central Google Scholar
Liu, L., Shao, G., Steele-Perkins, G. & Huang, S. The retinoblastoma interacting zinc finger gene RIZ produces a PR domain lacking product through an internal promoter. J. Biol. Chem.272, 2984–2991 (1997). CASPubMed Google Scholar
Buyse, I. M., Takahashi, E. & Huang, S. Physical mapping of the retinoblastoma-interacting zinc finger gene RIZ to D1S228 on chromosome 1p36. Genomics34, 119–121 (1996). CASPubMed Google Scholar
Chadwick, R. B. et al. Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. Proc. Natl Acad. Sci. USA97, 2662–2667 (2000). CASPubMedPubMed Central Google Scholar
He, L. et al. RIZ1, but not the alternative RIZ2 product of the same gene, is underexpressed in breast cancer, and forced RIZ1 expression causes G2-M cell cycle arrest and/or apoptosis. Cancer Res.58, 4238–4244 (1998). CASPubMed Google Scholar
Jiang, G.-L., Liu, L., Buyse, I. M., Simon, D. & Huang, S. Decreased RIZ1 expression but not RIZ2 in hepatoma and suppression of hepatoma tumorigenicity by RIZ1. Int. J. Cancer83, 541–547 (1999). CASPubMed Google Scholar
Du, Y. et al. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res.61, 8094–8099 (2001). CASPubMed Google Scholar
Jiang, G. L. & Huang, S. Adenovirus expressing RIZ1 in tumor suppressor gene therapy of microsatellite-unstable colorectal cancers. Cancer Res.61, 1796–1798 (2001). CASPubMed Google Scholar
Nucifora, G. et al. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc. Natl Acad. Sci. USA91, 4004–4008 (1994). CASPubMedPubMed Central Google Scholar
Morishita, K. et al. Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell54, 831–840 (1988). CASPubMed Google Scholar
Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL1 gene, related to Drosophila trithorax, to the AF4 gene. Cell71, 701–708 (1992). CASPubMed Google Scholar
Tkachuk, D. C., Kohler, S. & Cleary, M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell71, 691–700 (1992). CASPubMed Google Scholar
Djabali, M. et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nature Genet.2, 113–118 (1992). CASPubMed Google Scholar
Arakawa, H. et al. Identification and characterization of the ARP1 gene, a target for the human acute leukemia ALL1 gene. Proc. Natl Acad. Sci. USA95, 4573–4578 (1998). CASPubMedPubMed Central Google Scholar
Baffa, R., Negrini, M., Schichman, S. A., Huebner, K. & Croce, C. M. Involvement of the ALL1 gene in a solid tumor. Proc. Natl Acad. Sci. USA92, 4922–4926 (1995). CASPubMedPubMed Central Google Scholar
Peters, A. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323–337 (2001). CASPubMed Google Scholar
Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature412, 561–565 (2001). CASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromodomain. Nature410, 120–124 (2001). CASPubMed Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). CASPubMed Google Scholar
Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nature Genet.30, 365–366 (2002). CASPubMed Google Scholar
Chesi, M. et al. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood92, 3025–3034 (1998). CASPubMed Google Scholar
Lin, Y., Wong, K.-K. & Calame, K. Repression of c-Myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science276, 596–598 (1997). CASPubMed Google Scholar
Mochizuki, N. et al. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood96, 3209–3214 (2000). CASPubMed Google Scholar
Caudill, M. A. et al. Intracellular _S_-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine β-synthase heterozygous mice. J Nutr131, 2811–2818 (2001). CASPubMed Google Scholar
Hershfield, M. S. & Krodich, N. M. _S_-adenosyl-homocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science202, 757–760 (1978). CASPubMed Google Scholar
Williams-Ashman, H. G., Seidenfeld, J. & Galletti, P. Trends in the biochemical pharmacology of 5′-deoxy-5′-methylthioadenosine. Biochem. Pharmacol.31, 277–288 (1982). CASPubMed Google Scholar
Mikol, Y. B., Hoover, K. L., Creasia, D. & Poirier, L. A. Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis4, 1619–1629 (1983). CASPubMed Google Scholar
Ghoshal, A. K. & Farber, E. The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis5, 1367–1370 (1984). CASPubMed Google Scholar
Shivapurkar, N. & Poirier, L. A. Tissue levels of _S_-adenosyl-methionine and _S_-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis4, 1051–1057 (1983). CASPubMed Google Scholar
Cravo, M. L. et al. Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treated rats. Cancer Res.52, 5002–5006 (1992). CASPubMed Google Scholar
Christensen, B. et al. Correlation of a common mutation in the methylenetetrahydrofolate reductase gene with plasma homocysteine in patients with premature coronary artery disease. Arterioscler. Thromb. Vasc. Biol.17, 569–573 (1997). CASPubMed Google Scholar
Fullerton, F. R., Hoover, K., Mikol, Y. B., Creasia, D. A. & Poirier, L. A. The inhibition by methionine and choline of liver carcinoma formation in male C3H mice dosed with diethylnitrosamine and fed phenobarbital. Carcinogenesis11, 1301–1305 (1990). CASPubMed Google Scholar
Giovannucci, E. et al. Multivitamin use, folate, and colon cancer in women in the Nurses' Health Study. Ann. Intern. Med.129, 517–524 (1998). CASPubMed Google Scholar
Prinz-Langenohl, R., Fohr, I. & Pietrzik, K. Beneficial role for folate in the prevention of colorectal and breast cancer. Eur. J. Nutrit.40, 98–105 (2001). CAS Google Scholar
Butterworth, C. E. Jr, Hatch, K. D., Gore, H., Mueller, H. & Krumdieck, C. L. Improvement in cervical dysplasia associated with folic acid therapy in users of oral contraceptives. Am. J. Clin. Nutr.35, 73–82 (1982). CASPubMed Google Scholar
Heimburger, D. C. et al. Improvement in bronchial squamous metaplasia in smokers treated with folate and vitamin B12. Report of a preliminary randomized, double-blind intervention trial. JAMA259, 1525–1530 (1988). CASPubMed Google Scholar
Hartman, T. J. et al. Association of the B-vitamins pyridoxal 5′-phosphate (B(6)), B(12), and folate with lung cancer risk in older men. Am. J. Epidemiol.153, 688–694 (2001). CASPubMed Google Scholar
Kato, I. et al. Serum folate, homocysteine and colorectal cancer risk in women: a nested case–control study. Br. J. Cancer79, 1917–1922 (1999). CASPubMedPubMed Central Google Scholar
Chello, P. L. & Bertino, J. R. Dependence of 5-methyltetra-hydrofolate utilization by L5178Y murine leukemia cells in vitro on the presence of hydroxycobalamin and transcobalamin II. Cancer Res.33, 1898–1904 (1973). CASPubMed Google Scholar
Hoffman, R. M. & Erbe, R. W. High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc. Natl Acad. Sci. USA73, 1523–1527 (1976). CASPubMedPubMed Central Google Scholar
Stern, P. H. & Hoffman, R. M. Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro20, 663–670 (1984). CASPubMed Google Scholar
Toohey, J. I. Methylthio group cleavage from methylthioadenosine. Description of an enzyme and its relationship to the methylthio requirement of certain cells in culture. Biochem. Biophys. Res. Commun.78, 1273–1280 (1977). CASPubMed Google Scholar
Nobori, T. et al. Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers. Proc. Natl Acad. Sci. USA93, 6203–6208 (1996). CASPubMedPubMed Central Google Scholar
Tang, B. Defects in methylthioadenosine phosphorylase are associated with but not responsible for methionine-dependent tumor cell growth. Cancer Res.60, 5543–5547 (2000). CASPubMed Google Scholar
Dreyling, M. H., Roulston, D., Bohlander, S. K., Vardiman, J. & Olopade, O. I. Codeletion of CDKN2 and MTAP genes in a subset of non-Hodgkin's lymphoma may be associated with histologic transformation from low-grade to diffuse large-cell lymphoma. Genes Chromosom. Cancer22, 72–78 (1998). CASPubMed Google Scholar
Schmid, M. et al. Homozygous deletions of methylthioadenosine phosphorylase (MTAP) are more frequent than p16INK4A (CDKN2) homozygous deletions in primary non-small cell lung cancers (NSCLC). Oncogene17, 2669–2675 (1998). CASPubMed Google Scholar
Pegg, A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res.48, 759–774 (1988). CASPubMed Google Scholar
Megosh, L. et al. Increased frequency of spontaneous skin tumors in transgenic mice which overexpress ornithine decarboxylase. Cancer Res.55, 4205–4209 (1995). CASPubMed Google Scholar
Redman, C. et al. Involvement of polyamines in selenomethionine induced apoptosis and mitotic alterations in human tumor cells. Carcinogenesis18, 1195–1202 (1997). CASPubMed Google Scholar
Wainfan, E. & Poirier, L. A. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res.52, 2071s–2077s (1992). | PubMed | CASPubMed Google Scholar
Rushmore, T. H. et al. A choline-devoid diet, carcinogenic in the rat, induces DNA damage and repair. Carcinogenesis7, 1677–1680 (1986). CASPubMed Google Scholar
James, S. J., Miller, B. J., Cross, D. R., McGarrity, L. J. & Morris, S. M. The essentiality of folate for the maintenance of deoxynucleotide precursor pools, DNA synthesis, and cell cycle progression in PHA-stimulated lymphocytes. Environ. Health Perspect.101 (Suppl. 5), 173–178 (1993). CASPubMedPubMed Central Google Scholar
da Costa, K. A., Cochary, E. F., Blusztajn, J. K., Garner, S. C. & Zeisel, S. H. Accumulation of 1,2-sn-diradylglycerol with increased membrane-associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline-deficient rats. J. Biol. Chem.268, 2100–2105 (1993). CASPubMed Google Scholar
Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell81, 197–205 (1995). CASPubMed Google Scholar
Blount, B. C. et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc. Natl Acad. Sci. USA94, 3290–3295 (1997). CASPubMedPubMed Central Google Scholar
Duthie, S. J., Grant, G. & Narayanan, S. Increased uracil misincorporation in lymphocytes from folate-deficient rats. Br. J. Cancer83, 1532–1537 (2000). CASPubMedPubMed Central Google Scholar
Houlston, R. S. & Tomlinson, I. P. Polymorphisms and colorectal tumor risk. Gastroenterology121, 282–301 (2001). CASPubMed Google Scholar
Ma, J. et al. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res.57, 1098–1102 (1997). CASPubMed Google Scholar
Sohn, K. J. et al. The effect of dietary folate on Apc and p53 mutations in the dimethylhydrazine rat model of colorectal cancer. Carcinogenesis20, 2345–2350 (1999). CASPubMed Google Scholar
Corda, Y. et al. Interaction between Set1p and checkpoint protein Mec3p in DNA repair and telomere functions. Nature Genet.21, 204–208 (1999). CASPubMed Google Scholar
McCully, K. S. Homocystinuria, arteriosclerosis, methylmalonic aciduria, and methyltransferase deficiency: a key case revisited. Nutr. Rev.50, 7–12 (1992). CASPubMed Google Scholar
Seshadri, S. et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N. Engl. J. Med.346, 476–483 (2002). CASPubMed Google Scholar
Tsai, J. C. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc. Natl Acad. Sci. USA91, 6369–6373 (1994). CASPubMedPubMed Central Google Scholar
Gottlieb, P. D. et al. BOP encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nature Genet. 1 April 2002 (DOI:10.1038/ng866).
Brattstrom, L., Lindgren, A., Israelsson, B., Andersson, A. & Hultberg, B. Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J. Internal Med.236, 633–641 (1994). CASPubMed Google Scholar
Giovannucci, E. et al. Alcohol, low-methionine–low-folate diets, and risk of colon cancer in men. J. Natl Cancer Inst.87, 265–273 (1995). CASPubMed Google Scholar
Wu, K. et al. A prospective study on folate, B12, and pyridoxal 5′-phosphate (B6) and breast cancer. Cancer Epidemiol Biomarkers Prev8, 209–217 (1999). CASPubMed Google Scholar
Hsing, A. W. et al. Pernicious anemia and subsequent cancer. A population-based cohort study. Cancer71, 745–750 (1993). CASPubMed Google Scholar
Stolzenberg-Solomon, R. Z. et al. Pancreatic cancer risk and nutrition-related methyl-group availability indicators in male smokers. J. Natl Cancer Inst.91, 535–541 (1999). CASPubMed Google Scholar
Esteller, M., Garcia, A., Martinez-Palones, J. M., Xercavins, J. & Reventos, J. Germ line polymorphisms in cytochrome-P450 1A1 (C4887 CYP1A1) and methylenetetrahydrofolate reductase (MTHFR) genes and endometrial cancer susceptibility. Carcinogenesis18, 2307–2311 (1997). CASPubMed Google Scholar
Matsuo, K. et al. Association between polymorphisms of folate- and methionine-metabolizing enzymes and susceptibility to malignant lymphoma. Blood97, 3205–3209 (2001). CASPubMed Google Scholar
Gershoni-Baruch, R. et al. Association of the C677T polymorphism in the MTHFR gene with breast and/or ovarian cancer risk in Jewish women. Eur. J. Cancer36, 2313–2316 (2000). CASPubMed Google Scholar
Piyathilake, C. J. et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphism increases the risk of cervical intraepithelial neoplasia. Anticancer Res.20, 1751–1757 (2000). CASPubMed Google Scholar
Shen, H. et al. Polymorphisms of 5,10-methylenetetrahydrofolate reductase and risk of gastric cancer in a Chinese population: a case–control study. Int. J. Cancer95, 332–336 (2001). CASPubMed Google Scholar
Ma, J. et al. A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev8, 825–829 (1999). CASPubMed Google Scholar