- Folkman, J. The role of angiogenesis in tumor growth. Semin. Cancer Biol. 3, 65–71 (1992).
CAS PubMed Google Scholar
- Woodhouse, E. C., Chuaqui, R. F. & Liotta, L. A. General mechanisms of metastasis. Cancer 80, 1529–1537 (1997).
Article CAS PubMed Google Scholar
- Fidler, I. J. Critical determinants of cancer metastasis: rationale for therapy. Cancer Chemother. Pharmacol. 43, S3–S10 (1999).
Article CAS PubMed Google Scholar
- Chambers, A. F. et al. Critical steps in hematogenous metastasis: an overview. Surg. Oncol. Clin. N. Am. 10, 243–255 (2001).
Article CAS PubMed Google Scholar
- Wyckoff, J. B., Jones, J. G., Condeelis, J. S. & Segall, J. E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60, 2504–2511 (2000).This study used in vivo confocal microscopy to study details of the intravasation step of the metastatic process, and showed that metastatic tumours complete this step more efficiently than do non-metastatic tumours.
CAS PubMed Google Scholar
- Fidler, I. J. Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metastasis Rev. 10, 229–243 (1991).
Article CAS PubMed Google Scholar
- Welch, D. R. Technical considerations for studying cancer metastasis in vivo. Clin. Exp. Metastasis 15, 272–306 (1997).A thorough compilation of technical and experimental design factors that should be considered when studying metastasis in experimental animals.
Article CAS PubMed Google Scholar
- Chambers, A. F. & Tuck, A. B. Ras-responsive genes and tumor metastasis. Crit. Rev. Oncog. 4, 95–114 (1993).
CAS PubMed Google Scholar
- Kohn, E. C. & Liotta, L. A. Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res. 55, 1856–1862 (1995).
CAS PubMed Google Scholar
- Roberts, D. D. Regulation of tumor growth and metastasis by thrombospondin. FASEB J. 10, 1183–1191 (1996).
Article CAS PubMed Google Scholar
- Chambers, A. F. & Matrisian, L. M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl Cancer Inst. 89, 1260–1270 (1997).In vivo video microscopy studies summarized in this review led to a changing paradigm for the role of matrix metalloproteinases (MMPs) in the metastatic process, and indicated that MMPs have a broader role and affect more steps in the metastatic process than was previously believed.
Article CAS PubMed Google Scholar
- Freije, J. M., MacDonald, N. J. & Steeg, P. S. Nm23 and tumour metastasis: basic and translational advances. Biochem. Soc. Symp. 63, 261–271 (1998).
CAS PubMed Google Scholar
- Eccles, S. A. The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J. Mammary Gland Biol. Neoplasia 6, 393–406 (2001).
Article CAS PubMed Google Scholar
- Skubitz, A. P. Adhesion molecules. Cancer Treat. Res. 107, 305–329 (2002).
CAS PubMed Google Scholar
- Chambers, A. F., MacDonald, I. C., Schmidt, E. E., Morris, V. L. & Groom, A. C. Preclinical assessment of anti-cancer therapeutic strategies using in vivo videomicroscopy. Cancer Metastasis Rev. 17, 263–269 (1998/99).
- Koop, S. et al. Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Res. 54, 4791–4797 (1994).
CAS PubMed Google Scholar
- Wylie, S. et al. The matrix metalloproteinase inhibitor batimastat inhibits angiogenesis in liver metastases of B16F1 melanoma cells. Clin. Exp. Metastasis 17, 111–117 (1999).
Article CAS PubMed Google Scholar
- Chambers, A. F., MacDonald, I. C., Schmidt, E. E., Morris, V. L. & Groom, A. C. Clinical targets for anti-metastasis therapy. Adv. Cancer Res. 79, 91–121 (2000).
Article CAS PubMed Google Scholar
- Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 99–101 (1889).An often-cited article, which initiated the current discussions on 'seed' and 'soil'. Reference 20 is a re-publication of this article, which might be more accessible to some readers, and is introduced by a commentary by Poste and Paruch (see reference 21).
Google Scholar
- Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).
CAS PubMed Google Scholar
- Poste, G. & Paruch, L. Stephen Paget, M. D., F. R. C. S. (1855–1926): a retrospective. Cancer Metastasis Rev. 8, 93–97 (1989).
Article CAS PubMed Google Scholar
- Ewing, J. in Neoplastic Diseases. A Treatise on Tumors 77–89 (W. B. Saunders Co., Philadelphia & London, 1928).The chapter on metastasis in this oncology text is often mentioned in the context of the 'seed' and 'soil' discussion, but the whole chapter is well worth reading for its clinical and pathological observations, which reflect the state of thinking at the time that this text was written.
Google Scholar
- Weiss, L. & Harlos, J. P. The validity of negative necropsy reports for metastases in solid organs. J. Pathol. 148, 203–206 (1986).
Article CAS PubMed Google Scholar
- Weiss, L. et al. Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J. Pathol. 150,195–203 (1986).
Article CAS PubMed Google Scholar
- Weiss, L. et al. Metastatic patterns of renal carcinoma: an analysis of 687 necropsies. J. Cancer Res. Clin. Oncol. 114, 605–612 (1988).
Article CAS PubMed Google Scholar
- Weiss, L. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin. Exp. Metastasis 10, 191–199 (1992).A detailed analysis of published data on metastatic patterns from autopsy studies, which provides evidence for two important points in the 'seed' and 'soil' debate: much organ-specific metastasis can be accounted for by mechanical blood-flow patterns between primary tumours and secondary sites, but some primary-tumour–secondary-site pairs show evidence of organ-specific enhancement or suppression of specific tumour types.
Article CAS PubMed Google Scholar
- Hart, I. R. 'Seed and soil' revisited: mechanisms of site-specific metastasis. Cancer Metastasis Rev. 1, 5–16 (1982).
Article CAS PubMed Google Scholar
- Zetter, B. R. The cellular basis of site-specific tumor metastasis. N. Engl. J. Med. 322, 605–612 (1990).
Article CAS PubMed Google Scholar
- Fidler, I. J. Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg. Oncol. Clin. N.Am. 10, 257–269 (2001).
Article CAS PubMed Google Scholar
- Luzzi, K. J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).The first study to quantify the metastatic efficiency of individual, sequential steps in the metastatic process. Early stages in haematogenous metastasis are completed quite efficiently, whereas the growth phases of metastasis are very inefficient, indicating that regulation of growth in a secondary site is a key regulator of overall metastatic ability. Similar conclusions were reached, for a different cell line and target organ, in reference 31.
Article CAS PubMed PubMed Central Google Scholar
- Cameron, M. D. et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 60, 2541–2546 (2000).
CAS PubMed Google Scholar
- Varghese, H. J. et al. Activated Ras regulates the proliferation/apoptosis balance and early survival of developing micrometastases. Cancer Res. 62, 887–891 (2002).
CAS PubMed Google Scholar
- Potter, R. F. & Groom, A. C. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc. Res. 25, 68–84 (1983).
Article CAS PubMed Google Scholar
- Panes, J. & Granger, D. N. Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology 114, 1066–1090 (1998).
Article CAS PubMed Google Scholar
- Morris, V. L. et al. Effects of the disintegrin eristostatin on individual steps of hematogenous metastasis. Exp. Cell Res. 219, 571–578 (1995).
Article CAS PubMed Google Scholar
- Hangan, D. et al. Integrin VLA-2 (α2β1) function in postextravasation movement of human rhabdomyosarcoma RD cells in the liver. Cancer Res. 56, 3142–3149 (1996).
CAS PubMed Google Scholar
- Orr, F. W. & Wang, H. H. Tumor cell interactions with the microvasculature: a rate-limiting step in metastasis. Surg. Oncol. Clin. N. Am. 10, 357–381 (2001).Documents that the activation state of the endothelium can influence whether cancer cells arrest by adhesive interactions in pre-capillary vessels or by size restriction in smaller capillaries.
Article CAS PubMed Google Scholar
- Radinsky, R. Modulation of tumor cell gene expression and phenotype by the organ-specific metastatic environment. Cancer Metastasis Rev. 14, 323–338 (1995).
Article CAS PubMed Google Scholar
- Fidler, I. J. Modulation of the organ microenvironment for treatment of cancer metastasis. J. Natl Cancer Inst. 87, 1588–1592 (1995).
Article CAS PubMed Google Scholar
- Radinsky, R. Molecular mechanisms for organ-specific colon carcinoma metastasis. Eur. J. Cancer 31A, 1091–1095 (1995).
Article CAS PubMed Google Scholar
- Radinsky, R. & Ellis, L. M. Molecular determinants in the biology of liver metastasis. Surg. Oncol. Clin. N. Am. 5, 215–229 (1996).Studies reviewed in references 38–41 show clearly that molecular interactions between cancer cells and secondary organs can contribute to organ-specific metastasis, and provide molecular evidence for the nature of these interactions.
Article CAS PubMed Google Scholar
- Mundy, G. R. Mechanisms of bone metastasis. Cancer 80,1546–1556 (1997).
Article CAS PubMed Google Scholar
- Yoneda, T., Williams, P. J., Hiraga, T., Niewolna, M. & Nishimura, R. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J. Bone Miner. Res. 16, 1486–1495 (2001).
Article CAS PubMed Google Scholar
- Kuo,T. H. et al. Liver colonization competence governs colon cancer metastasis. Proc. Natl Acad. Sci. USA 92, 12085–12099 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Nakajima, M., Morikawa, K., Fabra, A., Bucana, C. D. & Fidler, I. J. Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. J. Natl Cancer Inst. 82,1890–1898 (1990).
Article CAS PubMed Google Scholar
- Gohji, K. et al. Organ-site dependence for the production of urokinase-type plasminogen activator and metastasis by human renal cell carcinoma cells. Am. J. Pathol. 151, 1655–1661 (1997).
CAS PubMed PubMed Central Google Scholar
- Fidler, I. J. et al. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev. 13, 209–222 (1994).
Article CAS PubMed Google Scholar
- Dalton, W. S. The tumor microenvironment as a determinant of drug response and resistance. Drug Resist. Updat. 2, 285–288 (1999).References 45–48 show that gene expression and cancer-cell behaviour can be markedly altered by the environment that cancer cells encounter in specific secondary sites.
Article CAS PubMed Google Scholar
- Yu, J. L., Rak, J. W., Coomber, B. L., Hicklin, D. J. & Kerbel, R. S. Effect of p53 status on tumor response to antiangiogenic therapy. Science 295, 1526–1528 (2002).
Article CAS PubMed Google Scholar
- Hendrix, M. J. et al. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res. 62, 665–668 (2002).
CAS PubMed Google Scholar
- Rinker-Schaeffer, C. W., Welch, D. R. & Sokoloff, M. Defining the biologic role of genes that regulate prostate cancer metastasis. Curr. Opin. Urol. 10, 397–401 (2000).
Article CAS PubMed Google Scholar
- Welch, D. R., Steeg, P. S. & Rinker-Schaeffer, C. W. Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res. 2, 408–416 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Yoshida, B. A., Sokoloff, M. M., Welch, D. R. & Rinker-Schaeffer, C. W. Metastasis-suppressor genes: a review and perspective on an emerging field. J. Natl Cancer Inst. 92, 1717–1730 (2000).
Article CAS PubMed Google Scholar
- Hunter, K. W. et al. Predisposition to efficient mammary tumor metastatic progression is linked to the breast cancer metastasis suppressor gene Brms1. Cancer Res. 61, 8866–8872 (2001).
CAS PubMed Google Scholar
- Baggiolini, M. Chemokines and leukocyte traffic. Nature 392, 565–568 (1998).
Article CAS PubMed Google Scholar
- Campbell, J. J. & Butcher, E. C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).
Article CAS PubMed Google Scholar
- Homey, B., Muller, A. & Zlotnik, A. Chemokines: agents for the immunotherapy of cancer? Nat. Rev. Immunol. 2, 175–184 (2002).|PubMed|
Article CAS PubMed Google Scholar
- Müller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).A conceptually important study that identifies molecular interactions that might contribute to organ-specific metastasis. This study is discussed in references 59–61.
Article PubMed Google Scholar
- Liotta, L. A. An attractive force in metastasis. Nature 410, 24–25 (2001).
Article CAS PubMed Google Scholar
- Moore, M. A. The role of chemoattraction in cancer metastases. Bioessays 23, 674–676 (2001).
Article CAS PubMed Google Scholar
- Murphy, P. M. Chemokines and the molecular basis of cancer metastasis. N. Engl. J. Med. 345, 833–835 (2001).
Article CAS PubMed Google Scholar
- Popik, W., Hessselgesser, J. E. & Pitha, P. M. Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway. J. Virol. 72, 6406–6413 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Tarin, D. Molecular genetics of metastasis. Ciba Found. Symp. 141,149–169 (1988).
CAS PubMed Google Scholar
- Greenberg, A. H., Egan, S. E. & Wright, J. A. Oncogenes and metastatic progression. Invasion Metastasis 9, 360–378 (1989).
CAS PubMed Google Scholar
- McKenna, W. G. et al. The role of the H-ras oncogene in radiation resistance and metastasis. Int. J. Radiat. Oncol. Biol. Phys. 18, 849–859 (1990).
Article CAS PubMed Google Scholar
- Matrisian, L. M. et al. The role of the matrix metalloproteinase stromelysin in the progression of squamous cell carcinomas. Am. J. Med. Sci. 302, 157–162 (1991).
Article CAS PubMed Google Scholar
- Chambers, A. F. Mechanisms of oncogene-mediated alterations in metastatic ability. Biochem. Cell. Biol. 70, 817–821 (1992).
Article CAS PubMed Google Scholar
- Rak, J. et al. Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev. 14, 263–277 (1995).
Article CAS PubMed Google Scholar
- Joneson, T. & Bar-Sagi, D. Ras effectors and their role in mitogenesis and oncogenesis. J. Mol. Med. 75, 587–593 (1997).
Article CAS PubMed Google Scholar
- Katz, M. E. & McCormick, F. Signal transduction from multiple Ras effectors. Curr. Opin. Genet. Dev. 7, 75–79 (1997).
Article CAS PubMed Google Scholar
- Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J. & Der, C. J. Increasing complexity of Ras signaling. Oncogene 17, 1395–1413 (1998).
Article CAS PubMed Google Scholar
- Webb, C. P. et al. Evidence for a role of Met-HGF/SF during Ras-mediated tumorigenesis/metastasis. Oncogene 17, 2019–2025 (1998).
Article CAS PubMed Google Scholar
- Webb, C. P., Van Aelst, L., Wigler, M. H. & Vande Woude, G. F. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc. Natl Acad. Sci. USA 95, 8773–8778 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Akhurst, R. J. & Derynck, R. TGF-β signaling in cancer: a double-edged sword. Trends Cell Biol. 11, S44–S51 (2001).
CAS PubMed Google Scholar
- Malaney, S. & Daly, R. J. The Ras signaling pathway in mammary tumorigenesis and metastasis. J. Mammary Gland Biol. Neoplasia 6, 101–113 (2001).
Article CAS PubMed Google Scholar
- Pruitt, K. & Der, C. J. Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett. 171, 1–10 (2001).
Article CAS PubMed Google Scholar
- Bos, J. L. Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).
CAS PubMed Google Scholar
- Clark, G. J. & Der, C. J. Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res. Treat. 35, 133–144 (1995).
Article CAS PubMed Google Scholar
- Koop, S. et al. Independence of metastatic ability and extravasation: metastatic Ras-transformed and control fibroblasts extravasate equally well. Proc. Natl Acad. Sci. USA 93, 11080–11084 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Weiss, L. Metastatic inefficiency. Adv. Cancer Res. 54, 159–211 (1990).
Article CAS PubMed Google Scholar
- Sugarbaker, P. H. Metastatic inefficiency: the scientific basis for resection of liver metastases from colorectal cancer. J. Surg. Oncol. Suppl. 3, 158–160 (1993).
Article CAS PubMed Google Scholar
- Wong, C. W. et al. Apoptosis: an early event in metastatic inefficiency. Cancer Res. 61, 333–338 (2001).
CAS PubMed Google Scholar
- Naumov, G. M. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162–2168 (2002).This study documents that solitary dormant cancer cells might persist for long periods of time in secondary sites, neither dividing nor undergoing apoptosis. These cells could contribute to tumour dormancy, and would not be susceptible to therapies that target actively dividing cancer cells.
CAS PubMed Google Scholar
- Meltzer, A. Dormancy and breast cancer. J. Surg. Oncol. 43, 181–188 (1990).
Article CAS PubMed Google Scholar
- Karrison, T. G., Ferguson, D. J. & Meier, P. Dormancy of mammary carcinoma after mastectomy. J. Natl Cancer Inst. 91, 80–85 (1999).
Article CAS PubMed Google Scholar
- Chambers, A. F., Naumov, G. N., Vantyghem, S. A. & Tuck, A. B. Molecular biology of breast cancer metastasis. Clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Res. 2, 400–407 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Naumov, G. N., MacDonald, I. C., Chambers, A. F. & Groom, A. C. Solitary cancer cells as a possible source of tumour dormancy? Semin. Cancer Biol. 11, 271–276 (2001).
Article CAS PubMed Google Scholar
- Demicheli, R. Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin. Cancer Biol. 11, 297–306 (2001).
Article CAS PubMed Google Scholar
- Demicheli, R., Terenziani, M. & Bonadonna, G. Estimate of tumor growth time for breast cancer local recurrences: rapid growth after wake-up? Breast Cancer Res. Treat. 51, 133–137 (1998).
Article CAS PubMed Google Scholar
- Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1,149–153 (1995).This study documents that pre-angiogenic micrometastases can exist in a 'dormant' state, in which active proliferation is balanced by apoptosis owing to a failure to attract new blood vessels, resulting in no net growth, and indicates that this form of tumour dormancy could be broken by the acquisition of angiogenic ability.
Article CAS PubMed Google Scholar
- Hahnfeldt, P., Panigrahy, D., Folkman, J. & Hlatky, L. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999).
CAS PubMed Google Scholar
- Morris, V. L. et al. Mammary carcinoma cell lines of high and low metastatic potential differ not in extravasation but in subsequent migration and growth. Clin. Exp. Metastasis 12, 357–367 (1994).
Article CAS PubMed Google Scholar
- Naumov, G. N. et al. Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J. Cell Sci. 112, 1835–1842 (1999).This study describes the utility of a heritable transfected fluorescent marker, GFP (green fluorescent protein), in monitoring and quantifying individual steps in the metastatic process.
Article CAS PubMed Google Scholar
- Pegram, M. D., Konecny, G. & Slamon, D. J. The molecular and cellular biology of HER2/neu gene amplification/overexpression and the clinical development of Herceptin (trastuzumab) therapy for breast cancer. Cancer Treat. Res. 103, 57–75 (2000).
Article CAS PubMed Google Scholar
- Slichenmyer, W. J. & Fry, D. W. Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin. Oncol. 28, 67–79 (2001).
Article CAS PubMed Google Scholar
- Griffin, J. The biology of signal transduction inhibition: basic science to novel therapies. Semin. Oncol. 28, 3–8 (2001).
Article CAS PubMed Google Scholar
- Adjei, A. A. Blocking oncogenic Ras signaling for cancer therapy. J. Natl Cancer Inst. 93, 1062–1074 (2001).
Article CAS PubMed Google Scholar
- Diel, I. J., Solomayer, E. F. & Bastert, G. Bisphosphonates and the prevention of metastasis: first evidences from preclinical and clinical studies. Cancer 88, 3080–3088 (2000).
Article CAS PubMed Google Scholar
- Theriault, R. L. & Hortobagyi, G. N. The evolving role of bisphosphonates. Semin. Oncol. 28, 284–290 (2001).
Article CAS PubMed Google Scholar