Ligand-targeted therapeutics in anticancer therapy (original) (raw)
Carter, P. Improving the efficacy of antibody-based cancer therapies. Nature Rev. Cancer1, 118–129 (2001). CAS Google Scholar
Huston, J. S. & George, A. J. Engineered antibodies take center stage. Hum. Antibodies10, 127–142 (2001). CASPubMed Google Scholar
Park, J. W. et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res.8, 1172–1181 (2002).Carefully controlled research study that describes the therapeutic effects in xenograft breast cancer models of anti-ERBB2-targeted immunoliposomes. This might be the first immunoliposome to enter clinical trials. CASPubMed Google Scholar
Drummond, D. C., Hong, K., Park, J. W., Benz, C. C. & Kirpotin, D. B. Liposome targeting to tumors using vitamin and growth factor receptors. Vitam. Horm.60, 285–332 (2000). CASPubMed Google Scholar
Senter, P. D. & Springer, C. J. Selective activation of anticancer produugs by monoclonal antibody–enzyme conjugates. Adv. Drug Deliv. Rev.53, 247–264 (2001). CASPubMed Google Scholar
Maynard, J. & Georgiou, G. Antibody engineering. Annu. Rev. Biomed. Eng.2, 339–376 (2000). CASPubMed Google Scholar
Noonberg, S. B. & Benz, C. C. Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily: role as anticancer agents. Drugs59, 753–767 (2000). CASPubMed Google Scholar
Borisch, B., Semac, I., Soltermann, A., Palomba, C. & Hoessli, D. C. Anti-CD20 treatments and the lymphocyte membrane: pathology for therapy. Verh. Dtsch. Ges. Pathol.85, 161–166 (2001). CASPubMed Google Scholar
Baselga, J. Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology61 (Suppl. 2), 14–21 (2001). CASPubMed Google Scholar
Vose, J. M. et al. Phase II study of rituximab in combination with CHOP chemotherapy in patients with previously untreated, aggressive non-Hodgkin's lymphoma. J. Clin. Oncol.19, 389–397 (2001). CASPubMed Google Scholar
Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predetermined specificity. Nature256, 495–497 (1975). CASPubMed Google Scholar
Dillman, R. O. Human antimouse and antiglobulin responses to monoclonal antibodies. Antibody Immunoconjugates Radiopharm3, 1 (1990). Google Scholar
Dillman, R. O. Monoclonal antibodies in the treatment of malignancy: basic concepts and recent developments. Cancer Invest.19, 833–841 (2001). CASPubMed Google Scholar
Pavlinkova, G. et al. Effects of humanization and gene shuffling on immunogenicity and antigen binding of anti-TAG-72 single-chain Fvs. Int. J. Cancer94, 717–726 (2001). CASPubMed Google Scholar
Juweid, M. et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res.52, 5144–5153 (1992). CASPubMed Google Scholar
Banerjee, R. K., van Osdol, W. W., Bungay, P. M., Sung, C. & Dedrick, R. L. Finite element model of antibody penetration in a prevascular tumor nodule embedded in normal tissue. J. Control. Release74, 193–202 (2001). CASPubMed Google Scholar
Adams, G. P. et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res.61, 4750–4755 (2001). CASPubMed Google Scholar
Lopes de Menezes, D. E., Pilarski, L. M. & Allen, T. M. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res.58, 3320–3330 (1998). CASPubMed Google Scholar
Ruoslahti, E. & Rajotte, D. An address system in the vasculature of normal tissues and tumors. Annu. Rev. Immunol.18, 813–827 (2000). CASPubMed Google Scholar
Brekken, R. A. & Thorpe, P. E. Vascular endothelial growth factor and vascular targeting of solid tumors. Anticancer Res.21, 4221–4229 (2001). CASPubMed Google Scholar
Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol.156, 1363–1380 (2000). CASPubMedPubMed Central Google Scholar
Ruoslahti, E. Specialization of tumor vasculature. Nature Rev. Cancer2, 83–90 (2002). Google Scholar
Yuan, F. et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res.55, 3752–3756 (1995). CASPubMed Google Scholar
Stohrerm, M., Boucher, Y., Stangassinger, M. & Jain, R. K. Oncotic pressure in solid tumors is elevated. Cancer Res.60, 4251–4255 (2000). Google Scholar
Yuan, F. et al. Microvascular permeability and interstitial penetration of sterically stabilized (Stealth) liposomes in a human tumor xenograft. Cancer Res.54, 3352–3356 (1994). CASPubMed Google Scholar
Allen, T. M., Hansen, C. B. & Stuart, D. D. in Medical Applications of Liposomes (eds Lasic, D. D. & Papahadjopoulos, D.) 297–323 (Elsevier Science, Amsterdam, 1998). Google Scholar
Ercan, M. T. & Caglar, M. Therapeutic radiopharmaceuticals. Curr. Pharm. Des.6, 1085–1121 (2000). CASPubMed Google Scholar
Goldenberg, D. M. Targeted therapy of cancer with radiolabeled antibodies. J. Nucl. Med.43, 693–713 (2002). CASPubMed Google Scholar
Wagner, H. N. J. et al. Administration guidelines for radioimmunotherapy of non-Hodgkin's lymphoma with (90)Y-labeled anti-CD20 monoclonal antibody. J. Nucl. Med.43, 267–272 (2002). CASPubMed Google Scholar
Kaminski, M. S. et al. Pivotal study of iodine I131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin's lymphomas. J. Clin. Oncol.19, 3908–3911 (2001).An important clinical study showing that patients who had failed several chemotherapy regimens had significantly increased responses to RAIT compared with their last qualifying chemotherapy. Google Scholar
Kaminski, M. S. et al. Iodine I131 tositumomab therapy for previously untreated follicular lymphoma. Proc. Am. Soc. Clin. Oncol. Ann. Meet.19, Abstract 11 (2000). Google Scholar
DeNardo, G. L. et al. Are radiometal-labeled antibodies better than iodine-131-labeled antibodies: comparative pharmacokinetics and dosimetry of copper-67-, iodine-131-, and yttrium-90-labeled Lym-1 antibody in patients with non-Hodgkin's lymphoma. Clin. Lymphoma1, 118–126 (2000). CASPubMed Google Scholar
Leonard, J. P. & Link, B. K. Immunotherapy of non-Hodgkin's lymphoma with hLL2 (epratuzumab, an anti-CD22 monoclonal antibody) and Hu1D10 (apolizumab). Semin. Oncol.29 (Suppl. 2), 81–86 (2002). CASPubMed Google Scholar
Linden, O. et al. Radioimmunotherapy using 131I-labeled anti-CD22 monoclonal antibody (LL2) in patients with previously treated B-cell lymphomas. Clin. Cancer Res.5, 3287s–3291s (1999). CASPubMed Google Scholar
Juweid, M. E. et al. Pharmacokinetics, dosimetry, and initial therapeutic results with 131I- and (111)In-/90Y-labeled humanized LL2 anti-CD22 monoclonal antibody in patients with relapsed, refractory non-Hodgkin's lymphoma. Clin. Cancer Res.5, 3292s–3303s (1999). CASPubMed Google Scholar
Postema, E. J., Boerman, O. C., Oyen, W. J., Raemaekers, J. M. & Corstens, F. H. Radioimmunotherapy of B-cell non-Hodgkin's lymphoma. Eur. J. Nucl. Med.28, 1725–1735 (2001). CASPubMed Google Scholar
Jurcic, J. G. Antibody therapy for residual disease in acute myelogenous leukemia. Crit. Rev. Oncol. Hematol.38, 37–45 (2001). CASPubMed Google Scholar
Burke, J. M., Jurcic, J. G. & Scheinberg, D. A. Radioimmunotherapy for acute leukemia. Cancer Control9, 106–113 (2002). PubMed Google Scholar
Dillman, R. O. Monoclonal antibody therapy for lymphoma: an update. Cancer Pract.9, 71–80 (2001). CASPubMed Google Scholar
Goldenberg, D. M. The role of radiolabeled antibodies in the treatment of non-Hodgkin's lymphoma: the coming of age of radioimmunotherapy. Crit. Rev. Oncol. Hematol.39, 195–201 (2001). CASPubMed Google Scholar
Casey, J. L. et al. Tumour targeting of humanised cross-linked divalent-Fab′ antibody fragments: a clinical phase I/II study. Br. J. Cancer86, 1401–1410 (2002). CASPubMedPubMed Central Google Scholar
Barbet, J. et al. Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother. Radiopharm.14, 153–166 (1999). CASPubMed Google Scholar
Gestin, J. F. et al. Two-step targeting of xenografted colon carcinoma using a bispecific antibody and 188Re-labeled bivalent hapten: biodistribution and dosimetry studies. J. Nucl. Med.42, 146–153 (2001). CASPubMed Google Scholar
Gautherot, E. et al. Pretargeted radioimmunotherapy of human colorectal xenografts with bispecific antibody and 131I-labeled bivalent hapten. J. Nucl. Med.41, 480–487 (2000). CASPubMed Google Scholar
Kennel, S. J. et al. Vascular-targeted radioimmunotherapy with the alpha-particle emitter (211)at. Radiat. Res.157, 633–641 (2002). CASPubMed Google Scholar
Duvic, M. et al. Quality-of-life improvements in cutaneous T-Cell lymphoma patients treated with denileukin diftitox (ONTAK(R)). Clin. Lymphoma2, 222–228 (2002). CASPubMed Google Scholar
Olsen, E. et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J. Clin. Oncol.19, 376–388 (2001).Clinical trial that describes the results and side effects of the only immunotoxin that has been approved so far, showing that patients with persistent or recurrent cutaneous T-cell lymphoma have a 30% response rate, but experienced a 25% rate of vascular leak syndrome. CASPubMed Google Scholar
Schindler, J., Sausville, E. A., Messmann, R., Uhr, J. W. & Vitetta, E. S. The toxicity of deglycosylated ricin A chain-containing immunotoxins in patients with non-Hodgkin's lymphoma is exacerbated by prior radiotherapy: a retrospective analysis of patients in five clinical trials. Clin. Cancer Res.7, 255–258 (2001). CASPubMed Google Scholar
Multani, P. S., O'Day, S., Nadler, L. M. & Grossbard, M. L. Phase II clinical trial of bolus infusion anti-B4 blocked ricin immunoconjugate in patients with relapsed B-cell non-Hodgkin's lymphoma. Clin. Cancer Res.4, 2599–2604 (1998). CASPubMed Google Scholar
Dinndorf, P. et al. Phase I trial of anti-B4-blocked ricin in pediatric patients with leukemia and lymphoma. J. Immunother.24, 511–516 (2001). CASPubMed Google Scholar
Grossbard, M. L. et al. A Phase II study of adjuvant therapy with anti-B4-blocked ricin after autologous bone marrow transplantation for patients with relapsed B-cell non-Hodgkin's lymphoma. Clin. Cancer Res.5, 2392–2398 (1999). CASPubMed Google Scholar
Messmann, R. A. et al. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin. Cancer Res.6, 1302–1313 (2000). CASPubMed Google Scholar
Baluna, R., Rizo, J., Gordon, B. E., Ghetie, V. & Vitetta, E. S. Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc. Natl Acad. Sci. USA96, 3957–3962 (1999).An important research study showing that a three-amino-acid sequence motif in toxins is responsible for binding to and damaging endothelial cells, causing vascular leak syndrome. CASPubMedPubMed Central Google Scholar
Baluna, R., Coleman, E., Jones, C., Ghetie, V. & Vitetta, E. S. The effect of a monoclonal antibody coupled to ricin A chain-derived peptides on endothelial cells in vitro: insights into toxin-mediated vascular damage. Exp. Cell Res.258, 417–424 (2000). CASPubMed Google Scholar
Vitetta, E. S. Immunotoxins and vascular leak syndrome. Cancer J.6, S218–S224 (2000). PubMed Google Scholar
Hu, R.-G., Zhai, Q.-W., He, W.-J., Mei, L. & Liu, W.-Y. Bioactivities of ricin retained and its immunoreactivity to anti-ricin polyclonal antibodies alleviated through pegylation. Int. J. Biochem. Cell Biol.34, 396–402 (2002). CASPubMed Google Scholar
Wei, B. R., Ghetie, M. A. & Vitetta, E. S. The combined use of an immunotoxin and a radioimmunoconjugate to treat disseminated human B-cell lymphoma in immunodeficient mice. Clin. Cancer Res.6, 631–642 (2000). CASPubMed Google Scholar
Kreitman, R. J. Toxin-labeled monoclonal antibodies. Curr. Pharm. Biotechnol.2, 313–325 (2001). CASPubMed Google Scholar
Frankel, A. E. Increased sophistication of immunotoxins. Clin. Cancer Res.8, 942–944 (2002). CASPubMed Google Scholar
Pennell, C. A. & Erickson, H. A. Designing immunotoxins for cancer therapy. Immunol. Res.25, 177–191 (2002). CASPubMed Google Scholar
Salvatore, G., Beers, R., Margulies, I., Kreitman, R. J. & Pastan, I. Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin. Cancer Res.8, 995–1002 (2002).Description of the use of phage display and hot-spot mutagenesis to select mutant FVfragments that had increased cytotoxicity against anti-CD22-expressing malignant cells. CASPubMed Google Scholar
Frankel, A. E., Powell, B. L., Hall, P. D., Case, L. D. & Kreitman, R. J. Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin. Cancer Res.8, 1004–1013 (2002). CASPubMed Google Scholar
Garnett, M. C. Targeted drug conjugates: principles and progress. Adv. Drug Del. Rev.53, 171–216 (2001). CAS Google Scholar
Tolcher, A. W. et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J. Clin. Oncol.17, 478–484 (1999). CASPubMed Google Scholar
Newton, D. L., Hansen, H. J., Mikulski, S. M., Goldenberg, D. M. & Rybak, S. M. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood97, 528–535 (2001). CASPubMed Google Scholar
Sievers, E. L. et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J. Clin. Oncol.19, 3244–3254 (2001).Clincial trial of the first approved immunoconjugate, showing that 30% of patients achieved remission, but a high incidence of myelosuppression and hyperbilirubinaemia was observed. CASPubMed Google Scholar
Stadtmauer, E. A. Trials with gemtuzumab ozogamicin (Mylotarg) combined with chemotherapy regimens in acute myeloid leukemia. Clin. Lymphoma2 (Suppl. 1), S24–S28 (2002). PubMed Google Scholar
Dubowchik, G. M. & Walker, M. A. Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharm. Therap.83, 67–123 (1999). CAS Google Scholar
Napier, M. P. et al. Antibody-directed enzyme prodrug therapy: efficacy and mechanism of action in colorectal carcinoma. Clin. Cancer Res.6, 765–772 (2000). CASPubMed Google Scholar
Xu, G. & McLeod, H. L. Strategies for enzyme/prodrug cancer therapy. Clin. Cancer Res.7, 3314–3324 (2001). CASPubMed Google Scholar
Bhatia, J. et al. Catalytic activity of an in vivo tumor targeted anti-CEA scFv::carboxypeptidase G2 fusion protein. Int. J. Cancer85, 571–577 (2000).Description of a new approach to ADEPT, in which both the targeting agent and the prodrug-converting enzyme are included together in a recombinant fusion protein. CASPubMed Google Scholar
Hansen, C. B., Kao, G. Y., Moase, E. H., Zalipsky, S. & Allen, T. M. Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim. Biophys. Acta1239, 133–144 (1995). PubMed Google Scholar
Torchilin, V. P. et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via _p_-nitrophenylcarbonyl groups. Biochim. Biophys. Acta1511, 397–411 (2001). CASPubMed Google Scholar
Ishida, T., Iden, D. L. & Allen, T. M. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett.460, 129–133 (1999).Description of a simple new technique for converting non-targeted liposomal drugs into targeted immunoliposomes that can be tailored to individual patient disease profiles, thereby overcoming one of the manufacturing barriers to clinical trials of immunoliposomes. CASPubMed Google Scholar
Iden, D. L. & Allen, T. M. In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion technique. Biochim. Biophys. Acta1513, 207–216 (2001). CASPubMed Google Scholar
Moreira, J. N., Ishida, T., Gaspar, R. & Allen, T. M. Use of the post-insertion technique to insert peptide ligands into pre-formed Stealth liposomes with retention of binding activity and cytotoxicity. Adv. Drug Deliv. Rev.19, 265–269 (2002). CAS Google Scholar
Rosenecker, J. et al. Increased liposome extravasation in selected tissues: effect of substance P. Proc. Natl Acad. Sci. USA93, 7236–7241 (1996). CASPubMedPubMed Central Google Scholar
Kong, G. et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res.60, 6950–6957 (2000). CASPubMed Google Scholar
Allen, T. M. & Moase, E. H. Therapeutic opportunities for targeted liposomal drug delivery. Adv. Drug Del. Rev.21, 117–133 (1996). CAS Google Scholar
Drummond, D. C., Meyer, O., Hong, K. L., Kirpotin, D. B. & Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev.51, 691–743 (1999). CASPubMed Google Scholar
Li, W. M., Mayer, L. D. & Bally, M. B. Prevention of antibody-mediated elimination of ligand-targeted liposomes by using poly(ethylene glycol)-modified lipids. J. Pharmacol. Exp. Therapeut.300, 976–983 (2002). CAS Google Scholar
Allen, T. M., Sapra, P., Moase, E., Moreira, J. N. & Iden, D. L. Adventures in targeting. J. Liposome Res.121, 5–12 (2002). Google Scholar
Nielsen, U. et al. Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta1591, 109–118 (2002). CASPubMed Google Scholar
Park, J. W. et al. Tumor targeting using anti-Her2 immunoliposomes. J. Control. Release74, 95–113 (2001). CASPubMed Google Scholar
Lopes de Menezes, D. E., Pilarski, L. M., Belch, A. R. & Allen, T. M. Selective targeting of immunoliposomal doxorubicin against human multiple myeloma in vitro and ex vivo. Biochim. Biophys. Acta1466, 205–220 (2000). CASPubMed Google Scholar
Boman, N. L., Masin, D., Mayer, L. D., Cullis, P. R. & Bally, M. B. Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors. Cancer Res.54, 2830–2833 (1994). CASPubMed Google Scholar
Ishida, T., Kirchmeier, M. J., Moase, E. H., Zalipsky, S. & Allen, T. M. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim. Biophys. Acta1515, 144–158 (2001). CASPubMed Google Scholar
Needham, D. & Dewhirst, M. W. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv. Drug Deliv. Rev.53, 285–305 (2001). CASPubMed Google Scholar
Sharma, A., Straubinger, R. M., Ojima, I. & Bernacki, R. J. Antitumor efficacy of taxane liposomes on a human ovarian tumor xenograft in nude athymic mice. J. Pharm. Sci.84, 1400–1404 (1995). CASPubMed Google Scholar
Lu, Z.-R., Shiah, J.-G., Sakuma, S., Kopeckova, P. & Kopecek, J. Design of novel bioconjugates for targeted drug delivery. J. Control. Rel.78, 165–173 (2002). CAS Google Scholar
David, A., Kopeckova, P., Rubinstein, A. & Kopecek, J. Enhanced bioorecognition and internalization of HMPA copolymers containing multiple or multivalent carbohydrate side-chains by human hepatocarcinoma cells. Bioconjugate Chem.12, 890–899 (2001). CAS Google Scholar
Seymour, L. W. et al. Hepatic drug targeting: Phase I evaluation of polymer-bound doxorubicin. J. Clin. Oncol.20, 1668–1676 (2002).Results of the only clinical trial so far that uses immunopolymers, demonstrating that the targeted therapy increased delivery of immunopolymers to tumours in patients with metastatic liver cancer. CASPubMed Google Scholar
Hovorka, O. et al. Differences in the intrcellular fate of free and polymer-bound doxorubicin. J. Control. Release80, 101–117 (2002). CASPubMed Google Scholar
Lopes de Menezes, D. E., Kirchmeier, M. J., Gagne, J.-F., Pilarski, L. M. & Allen, T. M. Cellular trafficking and cytotoxicity of anti-CD19-targeted liposomal doxorubicin in B lymphoma cells. J. Liposome Res.9, 199–228 (1999). Google Scholar
Kirchmeier, M. J., Ishida, T., Chevrette, J. & Allen, T. M. Correlations between the rate of intracellular release of endocytosed liposomal doxorubicin and cytotoxicity as determined by a new assay. J. Liposome Res.11, 15–29 (2001). CASPubMed Google Scholar
Satchi, R., Connors, T. A. & Duncan, R. PDEPT: polymer-directed enzyme prodrug therapy. I. HPMA copolymer-cathepsin B and PK1 as a model combination. Br. J. Cancer85, 1070–1076 (2001). CASPubMedPubMed Central Google Scholar
Simoes, S., Slepushkin, V., Duzgunes, N. & Pedroso de Lima, M. C. On the mechanisms of internatilzation and intracellular delivery mediated by pH-sensitive liposomes. Biochim. Biophys. Acta1515, 23–37 (2001). CASPubMed Google Scholar
Turk, M. J., Reddy, J. A., Chmielewski, J. A. & Low, P. S. Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim. Biophys. Acta1559, 56–68 (2002). CASPubMed Google Scholar
Hong, M.-S., Lim, S.-J., Oh, Y.-K. & Kim, C.-K. pH-sensitive, serum-stable and long-circulating liposomes as a new drug delivery system. J. Pharm. Pharmacol.54, 51–58 (2002). CASPubMed Google Scholar
Pasqualini, R. et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res.60, 722–727 (2000). CASPubMedPubMed Central Google Scholar
Lee, R. J. & Low, P. S. Folate-targeted liposomes for drug delivery. J. Liposome Res.7, 455–466 (1997). CAS Google Scholar
Gabizon, A. et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjugate Chem.10, 289–298 (1999). CAS Google Scholar
Ishida, O. et al. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm. Res.18, 1042–1048 (2001). CASPubMed Google Scholar
Derycke, A. S. L. & De Witte, P. A. M. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int. J. Oncol.20, 181–187 (2002). CASPubMed Google Scholar
Brekken, R. A. et al. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res.60, 5117–5124 (2000). CASPubMed Google Scholar
Kreitman, R. J. et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J. Clin. Oncol.18, 1622–1636 (2000). CASPubMed Google Scholar
Reardon, D. A. et al. Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J. Clin. Oncol.20, 1389–1397 (2002). CASPubMed Google Scholar
Behr, T. M. et al. Radioimmunotherapy of small-volume disease of metastatic colorectal cancer. Cancer94 (Suppl. 4), 1373–1381 (2002). CASPubMed Google Scholar
Epenetos, A. A., Hird, V., Lambert, H., Mason, P. & Coulter, C. Long term survival of patients with advanced ovarian cancer treated with intraperitoneal radioimmunotherapy. Int. J. Gynecol. Cancer10 (S1), 44–46 (2000). Google Scholar
Meredith, R. F. et al. Phase II study of interferon-enhanced 131I-labeled high affinity CC49 monoclonal antibody therapy in patients with metastatic prostate cancer. Clin. Cancer Res.5 (Suppl. 10), 3254s–3258s (1999). CASPubMed Google Scholar
Wiseman, G. A. et al. Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. Crit. Rev. Oncol. Hematol.39, 181–194 (2001).Important clinical study showing that RAIT with90yttrium Zevalin (anti-CD20) gave superior clinical outcome compared with immunotherapy with the non-radiolabelled correlate rituximab (Rituxan). CASPubMed Google Scholar
Witzig, T. E. et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J. Clin. Oncol.20, 2453–2463 (2002). CASPubMed Google Scholar
Schnell, R. et al. Treatment of refractory Hodgkin's lymphoma patients with an anti-CD25 ricin A-cahin immunotoxin. Leukemia14, 129–135 (2000). CASPubMed Google Scholar
Kreitman, R. J. et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N. Engl. J. Med.345, 241–247 (2001). CASPubMed Google Scholar
Thompson, J. et al. Improved binding of a bivalent single-chain immunotoxin results in increased efficacy for in vivo T-cell depletion. Protein Eng.14, 1035–1041 (2001). CASPubMed Google Scholar
Engebraaten, O., Hjortland, G. O., Juell, S., Hirschberg, H. & Fodstad, O. Intratumoral immunotoxin treatment of human malignant brain tumors in immunodefficient animals. Int. J. Cancer97, 846–852 (2002). CASPubMed Google Scholar
Strome, S. E. et al. Interleukin 4 receptor-directed cytotoxin therapy for human head and neck squamous cell carcinoma in animal models. Clin. Cancer Res.8, 281–286 (2002). CASPubMed Google Scholar
Thomas, P. B., Delatte, S. J., Sutphin, A., Frankel, A. E. & Tagge, E. P. Effective targeted cytotoxicity of neuroblastoma cells. J. Pediatr. Surg.37, 539–544 (2002). PubMed Google Scholar
Peipp, M. et al. A recombinant CD7-specific single-chain immunotoxin is a potent inducer of apoptosis in acute leukemic T cells. Cancer Res.62, 2848–2855 (2002). CASPubMed Google Scholar
Shinohara, H. et al. Expression of HER2 in human gastric cancer cells directly correlates with antitumor activity of a recombinant disulfide-stabilized anti-HER2 immunotoxin. J. Surg. Res.102, 169–177 (2002). CASPubMed Google Scholar
Veenendaal, L. M. et al. In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc. Natl Acad. Sci. USA99, 7866–7871 (2002). CASPubMedPubMed Central Google Scholar