The endocannabinoid system and its therapeutic exploitation (original) (raw)
Adams, I. B. & Martin, B. R. Cannabis: pharmacology and toxicology in animals and humans. Addiction91, 1585–1614 (1996). ArticleCASPubMed Google Scholar
Mechoulam, R. in Cannabis as Therapeutic Agent (ed. Mechoulam, R.) 1–19 (CRC Press Roca Ranton, 1986). The most comprehensive history of the recreational and medicinal use ofCannabisthroughout the centuries. Google Scholar
Williamson, E. M. & Evans, F. J. Cannabinoids in clinical practice. Drugs60 1303–1314 (2000). ArticleCASPubMed Google Scholar
Gaoni, Y. & Mechoulam, R. Isolation, structure, and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc.86, 1646–1647 (1964). The long-awaited conclusive chemical characterization of THC, the major psychoactive constituent ofCannabis. ArticleCAS Google Scholar
Walsh, D., Nelson, K. A. & Mahmoud, F. A. Established and potential therapeutic applications of cannabinoids in oncology. Support Care Cancer11, 137–143 (2003). ArticlePubMed Google Scholar
Devane, W. A., Dysarz, F. A., Johnson, M. R., Melvin, L. S. & Howlett, A. C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol.34, 605–613 (1988). The first sound evidence for the existence of specific binding sites for THC. CASPubMed Google Scholar
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature346, 561–564 (1990). ArticleCASPubMed Google Scholar
Mechoulam, R. & Hanus, L. Cannabidiol: an overview of some chemical and pharmacological aspects. Part I: chemical aspects. Chem. Phys. Lipids121, 35–43 (2002). ArticleCASPubMed Google Scholar
Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature365, 61–65 (1993). ArticleCASPubMed Google Scholar
Di Marzo, V. & Fontana, A. Anandamide, an endogenous cannabinomimetic eicosanoid: 'killing two birds with one stone'. Prostaglandins Leukot. Essent. Fatty Acids53, 1–11 (1995). ArticleCASPubMed Google Scholar
Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science258, 1946–1949 (1992). The study reporting the identification of the first endocannabinoid, anandamide. ArticleCASPubMed Google Scholar
Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol.50, 83–90 (1995). ArticleCASPubMed Google Scholar
Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Commun.215, 89–97 (1995). ArticleCAS Google Scholar
McAllister, S. D. & Glass, M. CB1 and CB2 receptor-mediated signalling: a focus on endocannabinoids. Prostaglandins Leukot. Essent. Fatty Acids66, 161–171 (2002). ArticleCASPubMed Google Scholar
Di Marzo, V., De Petrocellis, L., Fezza, F., Ligresti, A. & Bisogno, T. Anandamide receptors. Prostaglandins Leukot. Essent. Fatty Acids66, 377–391 (2002). ArticleCASPubMed Google Scholar
Piomelli, D. The molecular logic of endocannabinoid signalling. Nature Rev. Neurosci.4, 873–884 (2003). ArticleCAS Google Scholar
De Petrocellis, L., Cascio, M. G. & Di Marzo, V. The endocannabinoid system: a general view and latest additions. Br. J. Pharmacol.141, 765–774 (2004). ArticleCASPubMed Google Scholar
Pertwee, R. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther.74, 129–180 (1997). CASPubMed Google Scholar
Howlett, A. C. Pharmacology of cannabinoid receptors. Annu. Rev. Pharmacol. Toxicol.35, 607–634 (1995). ArticleCASPubMed Google Scholar
Di Marzo, V., Melck, D., Bisogno, T. & De Petrocellis, L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci.21, 521–528 (1998). ArticleCASPubMed Google Scholar
Schlicker, E. & Kathmann, M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol. Sci.22, 565–572 (2001). ArticleCASPubMed Google Scholar
Wilson, R. I. & Nicoll, R. A. Endocannabinoid signaling in the brain. Science296, 678–682 (2002). ArticleCASPubMed Google Scholar
Freund, T. F., Katona, I. & Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev.83, 1017–1066 (2003). ArticleCASPubMed Google Scholar
Parolaro, D. & Rubino, T. Is cannabinoid transmission involved in rewarding properties of drugs of abuse? Br. J. Pharmacol.136, 1083–1084 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gerdeman, G. L., Partridge, J. G., Lupica, C. R. & Lovinger, D. M. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci.26, 184–192 (2003). ArticleCASPubMed Google Scholar
Iversen, L. & Chapman, V. Cannabinoids: a real prospect for pain relief? Curr. Opin. Pharmacol.2, 50–55 (2002). ArticleCASPubMed Google Scholar
Randall, M. D., Harris, D., Kendall, D. A. & Ralevic, V. Cardiovascular effects of cannabinoids. Pharmacol. Ther.95, 191–202 (2002). ArticleCASPubMed Google Scholar
Di Carlo, G. & Izzo, A. A. Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert. Opin. Investig. Drugs12, 39–49 (2003). ArticleCASPubMed Google Scholar
Schmid, K., Niederhoffer, N. & Szabo, B. Analysis of the respiratory effects of cannabinoids in rats. Naunyn Schmiedebergs Arch. Pharmacol.368, 301–308 (2003). ArticleCASPubMed Google Scholar
Wenger, T. & Moldrich, G. The role of endocannabinoids in the hypothalamic regulation of visceral function. Prostaglandins Leukot. Essent. Fatty Acids66, 301–307 (2002). ArticleCASPubMed Google Scholar
Park, B., McPartland, J. M. & Glass, M. Cannabis, cannabinoids and reproduction. Prostaglandins Leukot. Essent. Fatty Acids70, 189–197 (2004). ArticleCASPubMed Google Scholar
Klein, T. W. et al. The cannabinoid system and immune modulation. J. Leukoc. Biol.74, 486–496 (2003). ArticleCASPubMed Google Scholar
Guzman, M., Sanchez, C. & Galve-Roperh, I. Cannabinoids and cell fate. Pharmacol. Ther.95, 175–184 (2002). ArticleCASPubMed Google Scholar
Di Marzo, V., Bisogno, T., De Petrocellis, L., Berger, A. & Mechoulam, R. in Biology of Marijuana (ed. Onaivi, E.) 125–173 (Harwood Academic, Reading, 2002). Google Scholar
Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science302, 84–88 (2003). An important study, together with reference 37, exemplifying the 'on-demand' character of endocannabinoid-mediated protective functions. ArticleCASPubMed Google Scholar
Kirkham, T. C., Williams, C. M., Fezza, F. & Di Marzo, V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br. J. Pharmacol.136, 550–557 (2002). ArticleCASPubMedPubMed Central Google Scholar
Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature418, 530–534 (2002). ArticleCASPubMed Google Scholar
Walker, J. M., Huang, S. M., Strangman, N. M., Tsou, K. & Sanudo-Pena, M. C. Pain modulation by release of the endogenous cannabinoid anandamide. Proc. Natl Acad. Sci. USA96, 12198–12203 (1999). ArticleCASPubMedPubMed Central Google Scholar
Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature410, 822–825 (2001). The first study pointing to a role for the endocannabinoids as orexigenic mediators. ArticleCASPubMed Google Scholar
Cota, D. et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest.112, 423–431 (2003). ArticleCASPubMedPubMed Central Google Scholar
Schabitz, W. R. et al. Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study. Stroke33, 2112–2114 (2002). ArticleCASPubMed Google Scholar
Parmentier-Batteur, S., Jin, K., Mao, X. O., Xie, L. & Greenberg, D. A. Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J. Neurosci.22, 9771–9775 (2002). ArticleCASPubMedPubMed Central Google Scholar
Panikashvili, D. et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature413, 527–531 (2001). ArticleCASPubMed Google Scholar
Di Marzo, V., Hill, M. P., Bisogno, T., Crossman, A. R. & Brotchie, J. M. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J.14, 1432–1438 (2000). ArticleCASPubMed Google Scholar
Maccarrone, M. et al. Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. J. Neurochem.85, 1018–1025 (2003). ArticleCASPubMed Google Scholar
Baker, D. et al. Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J.15, 300–302 (2001). The first example of the use of inhibitors of endocannabinoid inactivation as potential therapeutic agents. ArticleCASPubMed Google Scholar
Baker, D. et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature404, 84–87 (2000). ArticleCASPubMed Google Scholar
Mazzola, C., Micale, V. & Drago, F. Amnesia induced by β-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur. J. Pharmacol.477, 219–225 (2003). ArticleCASPubMed Google Scholar
Silverdale, M. A., McGuire, S., McInnes, A., Crossman, A. R. & Brotchie, J. M. Striatal cannabinoid CB1 receptor mRNA expression is decreased in the reserpine-treated rat model of Parkinson's disease. Exp. Neurol.169, 400–406 (2001). ArticleCASPubMed Google Scholar
Berrendero, F. et al. Changes in cannabinoid CB1 receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse41, 195–202 (2001). ArticleCASPubMed Google Scholar
Benito, C. et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains. J. Neurosci.23, 11136–11141 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lastres-Becker, I. et al. Changes in endocannabinoid transmission in the basal ganglia in a rat model of Huntington's disease. Neuroreport12, 2125–2129 (2001). ArticleCASPubMed Google Scholar
Denovan-Wright, E. M. & Robertson, H. A. Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington's disease mice. Neuroscience98, 705–713 (2000). ArticleCASPubMed Google Scholar
Glass, M., Faull, R. L. & Dragunow, M. Loss of cannabinoid receptors in the substantia nigra in Huntington's disease. Neuroscience56, 523–527 (1993). The first report of the possible involvement of cannabinoid receptors in a neurodegenerative disorder. ArticleCASPubMed Google Scholar
Bensaid, M. et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol. Pharmacol.63, 908–914 (2003). ArticleCASPubMed Google Scholar
Ravinet Trillou, C. et al. Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am. J. Physiol. Regul. Integr. Comp. Physiol.284, R345–R353 (2003). ArticlePubMed Google Scholar
Ravinet Trillou, C., Delgorge, C., Menet, C., Arnone, M. & Soubrie, P. CB1 cannabinoid receptor knockout in mice leads to leannes, resistence to diet-induced obesity and enhanced leptin sensitivity. Int. J. Obes. Relat. Metab. Disord.28, 640–648 (2004). ArticleCASPubMed Google Scholar
Wagner, J. A. et al. Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock. Nature390, 518–521 (1997). Possibly the first example of a pathological condition involving an altered endocannabinoid system. ArticleCASPubMed Google Scholar
Varga, K., Wagner, J. A., Bridgen, D. T. & Kunos, G. Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J.12, 1035–1044 (1998). ArticleCASPubMed Google Scholar
Batkai, S. et al. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nature Med.7, 827–832 (2001). ArticleCASPubMed Google Scholar
Wagner, J. A. et al. Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J. Am. Coll. Cardiol.38, 2048–2054 (2001). ArticleCASPubMed Google Scholar
Izzo, A. A. et al. Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br. J. Pharmacol.134, 563–570 (2001). ArticleCASPubMedPubMed Central Google Scholar
Izzo, A. A. et al. An endogenous cannabinoid tone attenuates cholera toxin-induced fluid accumulation in mice. Gastroenterology125, 765–774 (2003). A typical example of a protective role played 'on demand' by endocannabinoids in a peripheral organ. ArticleCASPubMed Google Scholar
Mascolo, N. et al. The endocannabinoid system and the molecular basis of paralytic ileus in mice. FASEB J.16, 1973–1975 (2002). ArticleCASPubMed Google Scholar
Wang, H. et al. Differential G protein-coupled cannabinoid receptor signaling by anandamide directs blastocyst activation for implantation. Proc. Natl Acad. Sci. USA100, 14914–14919 (2003). ArticleCASPubMedPubMed Central Google Scholar
Maccarrone, M. et al. Relation between decreased anandamide hydrolase concentrations in human lymphocytes and miscarriage. Lancet355, 1326–1329 (2000). The first human study pointing to the possible pathological consequences of over-active endocannabinoid signalling. ArticleCASPubMed Google Scholar
Maccarrone, M. et al. Low fatty acid amide hydrolase and high anandamide levels are associated with failure to achieve an ongoing pregnancy after IVF and embryo transfer. Mol. Hum. Reprod.8, 188–195 (2002). ArticleCASPubMed Google Scholar
Ligresti, A. et al. Possible endocannabinoid control of colorectal cancer growth. Gastroenterology125, 677–687 (2003). ArticleCASPubMed Google Scholar
Schmid, P. C., Wold, L. E., Krebsbach, R. J., Berdyshev, E. V. & Schmid, H. H. Anandamide and other N-acylethanolamines in human tumors. Lipids37, 907–912 (2002). ArticleCASPubMed Google Scholar
Sanchez, C. et al. Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res.61, 5784–5789 (2001). CASPubMed Google Scholar
De Petrocellis, L. et al. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc. Natl Acad. Sci. USA95, 8375–8380 (1998). The antiproliferative effects of the endocannabinoids against cancer cellsin vitrowere examined for the first time in this study. Together with reference 73, this marked the beginning of studies on the possible anticancer function of the endocannabinoid system. ArticleCASPubMedPubMed Central Google Scholar
Galve-Roperh, I. et al. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Med.6, 313–319 (2000). ArticleCASPubMed Google Scholar
Bifulco, M. et al. Control by the endogenous cannabinoid system of ras oncogene-dependent tumor growth. FASEB J.15, 2745–2747 (2001). ArticleCASPubMed Google Scholar
Casanova, M. L. et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J. Clin. Invest.111, 43–50 (2003). ArticleCASPubMedPubMed Central Google Scholar
Portella, G. et al. Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis. FASEB J.17, 1771–1773 (2003). ArticleCASPubMed Google Scholar
Bifulco, M. et al. A new strategy to block tumor growth by inhibiting endocannabinoid inactivation. FASEB J. 2 August 2004 (doi:10-1096/fj.04-1754fje).
Alberich Jorda, M. et al. The peripheral cannabinoid receptor CB2, frequently expressed on AML blasts, either induces a neutrophilic differentiation block or confers abnormal migration properties in a ligand-dependent manner. Blood104, 526–534 (2004). ArticlePubMedCAS Google Scholar
Cravatt, B. F. & Lichtman, A. H. Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr. Opin. Chem. Biol.7, 469–475 (2003). ArticleCASPubMed Google Scholar
Di Marzo, V. et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature372, 686–691 (1994). First proof that the endocannabinoid anandamide is an endogenous mediator in that it can be produced by neurons in an activity-dependent manner and inactivated by both neurons and astrocytes. ArticleCASPubMed Google Scholar
Di Marzo, V., De Petrocellis, L. Sepe, N. & Buono, A. Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem. J.316, 977–984 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bisogno, T. et al. Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. Biochem. J.322, 671–677 (1997). ArticleCASPubMedPubMed Central Google Scholar
Stella, N., Schweitzer, P. & Piomelli, D. A second endogenous cannabinoid that modulates long-term potentiation. Nature388, 773–778 (1997). ArticleCASPubMed Google Scholar
Schmid, P. C., Reddy, P. V., Natarajan, V. & Schmid, H. H. Metabolism of _N_-acylethanolamine phospholipids by a mammalian phosphodiesterase of the phospholipase D type. J. Biol. Chem.258, 9302–9306 (1983). ArticleCASPubMed Google Scholar
Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. & Ueda, N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem.279, 5298–5305 (2004). Cloning of the major enzyme catalysing anandamide biosynthesis. ArticleCASPubMed Google Scholar
Sugiura, T. et al. Transacylase-mediated and phosphodiesterase-mediated synthesis of _N_-arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, in rat brain microsomes. Comparison with synthesis from free arachidonic acid and ethanolamine. Eur. J. Biochem.240, 53–62 (1996). ArticleCASPubMed Google Scholar
Cadas, H., di Tomaso, E. & Piomelli, D. Occurrence and biosynthesis of endogenous cannabinoid precursor, _N_-arachidonoyl phosphatidylethanolamine, in rat brain. J. Neurosci.17, 1226–1242 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol.163, 463–468 (2003). Reports the cloning of the first enzymes catalysing the biosynthesis of an endocannabinoid, 2-arachidonoylglycerol. ArticleCASPubMedPubMed Central Google Scholar
Williams, E. J., Walsh, F. S. & Doherty, P. The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J. Cell Biol.160, 481–486 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fernandez-Ruiz, J., Berrendero, F., Hernandez, M. L. & Ramos, J. A. The endogenous cannabinoid system and brain development. Trends Neurosci.23, 14–20 (2000). ArticleCASPubMed Google Scholar
Lichtman, A. H., Shelton, C. C., Advani, T. & Cravatt, B. F. Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia. Pain109, 319–327 (2004). An important study confirming conclusively that FAAH can be targeted for the development of new antihyperalgesic drugs. ArticleCASPubMed Google Scholar
Clement, A. B., Hawkins, E. G., Lichtman, A. H. & Cravatt, B. F. Increased seizure susceptibility and proconvulsant activity of anandamide in mice lacking fatty acid amide hydrolase. J. Neurosci.23, 3916–3923 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sipe, J. C., Chiang, K., Gerber, A. L., Beutler, E. & Cravatt, B. F. A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc. Natl Acad. Sci. USA99, 8394–8399 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ligresti, A. et al. Further evidence for the specific process for the membrane transport of anandamide. Biochem. J.380, 265–272 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hillard, C. J., Edgemond, W. S., Jarrahian, A. & Campbell, W. B. Accumulation of _N_-arachidonoylethanolamine (anandamide) into cerebellar granule cells occurs via facilitated diffusion. J. Neurochem.69, 631–638 (1997). ArticleCASPubMed Google Scholar
Beltramo, M. et al. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science277, 1094–1097 (1997). ArticleCASPubMed Google Scholar
Bisogno, T., Maurelli, S., Melck, D., De Petrocellis, L. & Di Marzo, V. Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J. Biol. Chem.272, 3315–3323 (1997). ArticleCASPubMed Google Scholar
Bracey, M. H., Hanson, M. A., Masuda, K. R., Stevens, R. C. & Cravatt, B. F. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science298, 1793–1796 (2002). ArticleCASPubMed Google Scholar
Ortar, G., Ligresti, A., De Petrocellis, L., Morera, E. & Di Marzo, V. Novel selective and metabolically stable inhibitors of anandamide cellular uptake. Biochem. Pharmacol.65, 1473–1481 (2003). ArticleCASPubMed Google Scholar
Lopez-Rodriguez, M. L. et al. Design, synthesis, and biological evaluation of new inhibitors of the endocannabinoid uptake: comparison with effects on fatty acid amidohydrolase. J. Med. Chem.46, 1512–1522 (2003). ArticleCASPubMed Google Scholar
Fegley, D. et al. Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172. Proc. Natl Acad. Sci. USA (in the press).
Cravatt, B. F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature384, 83–87 (1996). Reports the cloning of the first 'endocannabinoid enzyme', FAAH, a potential therapeutic target for analgesic and anxiolytic compounds. ArticleCASPubMed Google Scholar
Cravatt, B. F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl Acad. Sci. USA98, 9371–9376 (2001). ArticleCASPubMedPubMed Central Google Scholar
Martin, B. R. et al. Cannabinoid properties of methylfluorophosphonate analogs. J. Pharmacol. Exp. Ther.294, 1209–1218 (2000). CASPubMed Google Scholar
Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nature Med.9, 76–81 (2003). ArticleCASPubMed Google Scholar
Leung, D., Hardouin, C., Boger, D. L. & Cravatt, B. F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nature Biotechnol.21, 687–691 (2003). ArticleCAS Google Scholar
Karlsson, M., Contreras, J. A., Hellman, U., Tornqvist, H. & Holm, C. cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J. Biol. Chem.272, 27218–27223 (1997). ArticleCASPubMed Google Scholar
Dinh, T. P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA99, 10819–10824 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ben-Shabat, S. et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur. J. Pharmacol.353, 23–31 (1998). ArticleCASPubMed Google Scholar
Hanus, L. et al. HU-308: a specific agonist for CB2, a peripheral cannabinoid receptor. Proc. Natl Acad. Sci. USA96, 14228–14233 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ibrahim, M. M. et al. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc. Natl Acad. Sci. USA100, 10529–10533 (2003). ArticleCASPubMedPubMed Central Google Scholar
McKallip, R. J. et al. Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. Blood100, 627–634 (2002). ArticleCASPubMed Google Scholar
Rinaldi-Carmona, M. et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett.350, 240–244 (1994). Describes the development of the first selective cannabinoid CB1-receptor antagonist, rimonabant, which is now in Phase III clinical trials being tested as an anti-obesity agent and against nicotine dependence. ArticleCASPubMed Google Scholar
Pinto, L. et al. Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology123, 227–234 (2002). ArticleCASPubMed Google Scholar
Van Sickle, M. D. et al. Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology121, 767–774 (2001). ArticleCASPubMed Google Scholar
Darmani, N. A. Δ(9)-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB1 receptor antagonist/inverse agonist SR 141716A Neuropsychopharmacology24, 198–203 (2001). ArticleCASPubMed Google Scholar
Cichewicz, D. L. Synergistic interactions between cannabinoid and opioid analgesics. Life Sci.74, 1317–1324 (2004). ArticleCASPubMed Google Scholar
Naef, M. et al. The analgesic effect of oral Δ-9-tetrahydrocannabinol (THC), morphine, and a THC-morphine combination in healthy subjects under experimental pain conditions. Pain105, 79–88 (2003). ArticleCASPubMed Google Scholar
Di Marzo, V. et al. Neurobehavioral activity in mice of _N_-vanillyl-arachidonyl-amide. Eur. J. Pharmacol.406, 363–374 (2000). ArticleCASPubMed Google Scholar
Di Marzo, V. et al. Highly selective CB1 cannabinoid receptor ligands and novel CB1/VR1 vanilloid receptor 'hybrid' ligands. Biochem. Biophys. Res. Commun.281, 444–451 (2001). ArticleCASPubMed Google Scholar
Brooks, J. W. et al. Arvanil-induced inhibition of spasticity and persistent pain: evidence for therapeutic sites of action different from the vanilloid VR1 receptor and cannabinoid CB1/CB2 receptors. Eur. J. Pharmacol.439, 83–92 (2002). ArticleCASPubMed Google Scholar
Melck, D. et al. Unsaturated long-chain _N_-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. Biochem. Biophys. Res. Commun.262, 275–284 (1999). ArticleCASPubMed Google Scholar
Wiley, J. L. et al. Paradoxical pharmacological effects of deoxy-tetrahydrocannabinol analogs lacking high CB1 receptor affinity. Pharmacology66, 89–99 (2002). ArticleCASPubMed Google Scholar
Ross, R. A. et al. Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656, and AM630. Br. J. Pharmacol.126, 665–672 (1999). ArticleCASPubMedPubMed Central Google Scholar
De Vry, J. M. et al. 3-[2-Cyano-3-(trifluoromethyl)phenoxy]phenyl 4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074): a novel cannabinoid CB1/CB2 receptor partial agonist with antihyperalgesic and anti-allodynic effects. J. Pharmacol. Exp. Ther.310, 620–632 (2004). ArticleCASPubMed Google Scholar
Pertwee, R. G. in Cannabinoids (ed. Di Marzo, V.) 32–83 (Kluwer Academic, New York, 2004). Google Scholar
Wade, D. T., Robson, P., House, H., Makela, P. & Aram, J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin. Rehabil.17, 21–29 (2003). ArticlePubMed Google Scholar
Cannabis-based medicines — GW pharmaceuticals: high CBD, high THC, medicinal cannabis — GW pharmaceuticals, THC:CBD. Drugs RD4, 306–309 (2003).
Pop, E. Dexanabinol Pharmos. Curr. Opin. Investig. Drugs1, 494–503 (2000). CASPubMed Google Scholar
Burstein, S. H. Ajulemic acid (CT3): a potent analog of the acid metabolites of THC. Curr. Pharm. Des.6, 1339–1345 (2000). ArticleCASPubMed Google Scholar
Sumariwalla, P. F. et al. A novel synthetic, nonpsychoactive cannabinoid acid (HU-320) with antiinflammatory properties in murine collagen-induced arthritis. Arthritis Rheum.50, 985–998 (2004). ArticleCASPubMed Google Scholar
Bisogno, T. et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol.134, 845–852 (2001). ArticleCASPubMedPubMed Central Google Scholar
Feigenbaum, J. J. et al. Nonpsychotropic cannabinoid acts as a functional _N_-methyl-D-aspartate receptor blocker. Proc. Natl Acad. Sci. USA86, 9584–9587 (1989). ArticleCASPubMedPubMed Central Google Scholar
Liu, J., Li, H., Burstein, S. H., Zurier, R. B. & Chen, J. D. Activation and binding of peroxisome proliferator-activated receptor-γ by synthetic cannabinoid ajulemic acid. Mol. Pharmacol.63, 983–992 (2003). ArticleCASPubMed Google Scholar
Lange, J., Kruse, C., Tipker, J., Tulp, M. & van Vliet, B. (Solvay Pharmaceuticals) 4,5-Dihydro-1H-pyrazole derivatives having CB1-antagonistic activity. WO0170700 (2001).
Makrijannis, A. & Deng, H. (Univ. Connecticut) Cannabimimetic indole derivatives. WO0128557 (2001).
Makrijannis, A. & Deng, H. (Univ. Connecticut) Retro-anandamides, high affinity and stability cannabinoid receptor ligands. WO0128498 (2001).
Mauler, F. et al. BAY 38-7271: a novel highly selective and highly potent cannabinoid receptor agonist for the treatment of traumatic brain injury. CNS Drug Rev.9, 343–358 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rinaldi-Carmona, M. et al. SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J. Pharmacol. Exp. Ther.284, 644–650 (1998). CASPubMed Google Scholar
Iwamura, H., Suzuki, H., Ueda, Y., Kaya, T. & Inaba, T. In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J. Pharmacol. Exp. Ther.296, 420–425 (2001). CASPubMed Google Scholar
Pertwee, R. G. et al. O-1057, a potent water-soluble cannabinoid receptor agonist with antinociceptive properties. Br. J. Pharmacol.129, 1577–1584 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zajicek, J. et al. UK MS Research Group. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet362, 1517–1526 (2003). The first very large controlled clinical study with THC andCannabisextract as potential treatments for a human disorder. ArticleCASPubMed Google Scholar
Muller-Vahl, K. R. et al. Δ9-tetrahydrocannabinol (THC) is effective in the treatment of tics in Tourette syndrome: a 6-week randomized trial. J. Clin. Psychiatry64, 459–465 (2003). ArticlePubMed Google Scholar
Sieradzan, K. A. et al. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson's disease: a pilot study. Neurology57, 2108–2111 (2001). ArticleCASPubMed Google Scholar
Fox, S. H., Kellett, M., Moore, A. P., Crossman, A. R. & Brotchie, J. M. Randomised, double-blind, placebo-controlled trial to assess the potential of cannabinoid receptor stimulation in the treatment of dystonia. Mov. Disord.17, 145–149 (2002). ArticlePubMed Google Scholar
Porcella, A., Maxia, C., Gessa, G. L. & Pani, L. The synthetic cannabinoid WIN55212-2 decreases the intraocular pressure in human glaucoma resistant to conventional therapies. Eur. J. Neurosci.13, 409–412 (2001). ArticleCASPubMed Google Scholar
Buggy, D. J. et al. Lack of analgesic efficacy of oral Δ-9-tetrahydrocannabinol in postoperative pain. Pain106, 169–172 (2003). ArticleCASPubMed Google Scholar
Abrams, D. I. et al. Short-term effects of cannabinoids in patients with HIV-1 infection: a randomized, placebo-controlled clinical trial. Ann. Intern. Med.139, 258–266 (2003). ArticleCASPubMed Google Scholar
Grant, I., Gonzalez, R., Carey, C. L., Natarajan, L. & Wolfson, T. Non-acute (residual) neurocognitive effects of cannabis use: a meta-analytic study. J. Int. Neuropsychol. Soc.9, 679–689 (2003). ArticleCASPubMed Google Scholar
James, J. S. Marijuana safety study completed: weight gain, no safety problems. AIDS Treat. News348, 3–4 (2000). Google Scholar
Tramer, M. R. et al. Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. BMJ323, 16–21 (2001). ArticleCASPubMedPubMed Central Google Scholar
Karst, M. et al. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA290, 1757–1762 (2003). ArticleCASPubMed Google Scholar
Knoller, N. et al. Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit. Care Med.30, 548–554 (2002). ArticleCASPubMed Google Scholar
Di Marzo, V. et al. Biosynthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in circulating and tumoral macrophages. Eur. J. Biochem.264, 258–267 (1999). ArticleCASPubMed Google Scholar
Chevaleyre, V. & Castillo, P. E. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron38, 461–472 (2003). The first study pointing to a possible functional difference between 2-AG and anandamide in the modulation of synaptic neurotransmission. ArticleCASPubMed Google Scholar
Egertova, M., Cravatt, B. F. & Elphick, M. R. Comparative analysis of fatty acid amide hydrolase and CB1 cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling. Neuroscience119, 481–496 (2003). ArticleCASPubMed Google Scholar
Hanus, L. et al. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc. Natl Acad. Sci. USA98, 3662–3665 (2001). ArticleCASPubMedPubMed Central Google Scholar
Porter, A. C. et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J. Pharmacol. Exp. Ther.301, 1020–1024 (2002). ArticleCASPubMed Google Scholar
Huang, S. M. et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl Acad. Sci. USA99, 8400–8405 (2002). ArticleCASPubMedPubMed Central Google Scholar
Martin, B. R., Mechoulam, R. & Razdan, R. K. Discovery and characterization of endogenous cannabinoids. Life Sci.65, 573–595 (1999). ArticleCASPubMed Google Scholar
Bisogno, T. et al. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem. Biophys. Res. Commun.248, 515–522 (1998). ArticleCASPubMed Google Scholar