Idiosyncratic drug hepatotoxicity (original) (raw)
Ostapowicz, G. et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Int. Med.137, 947–954 (2002). PubMed Google Scholar
Kaplowitz, N. Drug-induced liver disorders: implications for drug development and regulation. Drug Saf.24, 483–490 (2001). CASPubMed Google Scholar
Obermayer-Straub, P. & Manns, M. P. in Drug-Induced Liver Disease (eds Kaplowitz, N. & DeLeve, L.) 125–149 (Marcel Dekker, New York, 2003). Google Scholar
Maria, V. A. & Victorino, R. M. Diagnostic value of specific T cell reactivity to drugs in 95 cases of drug-induced liver injury. Gut41, 534–540 (1997). CASPubMedPubMed Central Google Scholar
Maria, V. A. & Victorino, R. M. Immunological investigation in hepatic drug reactions. Clin. Exp. Allergy28 (Suppl. 4), 71–77 (1998). CASPubMed Google Scholar
Gunawan, B. & Kaplowitz, N. Clinical perspectives in xenobiotic hepatotoxicity. Drug Metab. Rev.36, 301–312 (2004). CASPubMed Google Scholar
Seguin, B. & Uetrecht, J. The danger hypothesis applied to idiosyncratic drug reactions. Curr. Opin. Allergy Clin. Immunol.3, 235–242 (2003). PubMed Google Scholar
Touloukian, J. & Kaplowitz, N. Halothane-induced hepatic disease. Semin. Liver Dis.1, 134–142 (1981). CASPubMed Google Scholar
Lewis, J. H. et al. Amiodarone hepatotoxicity: prevalence and clinicopathologic correlations among 104 patients. Hepatology9, 679–685 (1989). CASPubMed Google Scholar
Graham, D. J., Green, L., Senior, J. R. & Nourjah, P. Troglitazone-induced liver failure: a case study. Am. J. Med.114, 299–306 (2003). PubMed Google Scholar
Tolman, K. G. Defining patient risks from expanded preventive therapies. Am. J. Cardiol.85, 15E–19E (2000). CASPubMed Google Scholar
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol.12, 991–1045 (1994). CASPubMed Google Scholar
Njoku, D. B. et al. Autoantibodies associated with volatile anesthetic hepatitis found in the sera of a large cohort of pediatric anesthesiologists. Anesth. Analg.94, 243–249 (2002). PubMed Google Scholar
Levy, M. Role of viral infections in the induction of adverse drug reactions. Drug Saf.16, 1–8 (1997). CASPubMed Google Scholar
Ozick, L. A. et al. Hepatotoxicity from isoniazid and rifampin in inner-city AIDS patients. Am. J. Gastroenterol.90, 1978–1980 (1995). CASPubMed Google Scholar
Wong, W. -M. et al. Antituberculous drug-related liver dysfunction in chronic hepatitis B infection. Hepatology31, 201–206 (2000). CASPubMed Google Scholar
Ungo, J. R. et al. Antituberculous drug-induced hepatotoxicity: the role of hepatitis C virus and the human immunodeficiency virus. Am. J. Respir. Crit. Care Med.157, 1871–1876 (1998). CASPubMed Google Scholar
Schwartz, G. G. et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes. JAMA285, 1711–1718 (2001). CASPubMed Google Scholar
Kornbrust, D. J. et al. Toxicity of the HMG-coenzyme A reductase inhibitor, lovastatin, to rabbits. J. Pharmacol. Exp. Ther.248, 498–505 (1989). CASPubMed Google Scholar
Horsmans, Y., Desager, J. P. & Harvengt, C. Biochemical changes and morphological alterations of the liver in guinea-pigs after administration of simvastatin (HMG CoA reductase-inhibitor). Pharmacol. Toxicol.67, 336–339 (1990). CASPubMed Google Scholar
Senior, J. R. in Drug-Induced Liver Disease (eds Kaplowitz, N. & DeLeve, L.) 739–754 (Marcel Dekker, New York, 2003). Google Scholar
Zimmerman, H. J. in Hepatotoxicity: The Adverse Effects of Drugs and Other Chemicals on the Liver (2nd edn) (ed. Zimmerman, H.) 433 (Lippincott, Philadelphia, 1999) Google Scholar
Chojkier, M. Troglitazone and liver injury: in search of answers. Hepatology41, 237–246 (2005). CASPubMed Google Scholar
Menon, K., Angulo, P. & Lindor, K. D. Severe cholestatic hepatitis from troglitazone in a patient with nonalcoholic steatohepatitis and diabetes mellitus. Am. J. Gastroenterol.96, 1631–1634 (2001). PubMed Google Scholar
Garcia-Rodriguez, L. A., Stricker, B. H. & Zimmerman, H. J. Risk of acute liver injury, associated with the combination of amoxicillin and clavulanic acid. Arch. Int. Med.156, 1327–1332 (1996). CAS Google Scholar
Stieger, B. et al. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology118, 422–430 (2000). CASPubMed Google Scholar
Iverson, S. L. & Uetrecht, J. P. Identification of a reactive metabolite of terbinafine: insights into terbinafine-induced hepatotoxicity. Chem. Res. Toxicol.14, 175–181 (2001). CASPubMed Google Scholar
Lakehal, F. et al. Indirect cytotoxicity of flucoxacillin toward human biliary epithelium via metabolite formation in hepatocytes. Chem. Res. Toxicol.14, 694–701 (2001). CASPubMed Google Scholar
Dietrich, C. G., Ottenhoff, R., deWaart, D. R. & Oude Elferink, R. P J. Role of MRP2 and GSH in intrahepatic cycling of toxins. Toxicology167, 73–81 (2001). CASPubMed Google Scholar
Derby, L. E., Jick, H., Henry, D. A. & Dean, A. D. Erythromycin-associated cholestatic hepatitis. Med. J. Aust.158, 600–602 (1993). CASPubMed Google Scholar
Selim, K. & Kaplowitz, N. Hepatotoxicity of psychotropic drugs. Hepatology29, 1347–1351 (1999). CASPubMed Google Scholar
Andrade, R. J. et al. HLA Class II genotype influences the type of liver injury in drug-induced idiosyncratic liver disease. Hepatology39, 1603–1612 (2004). CASPubMed Google Scholar
Watkins, P. B. & Whitcomb, R. W. Hepatic dysfunction associated with troglitazone. N. Eng. J. Med.338, 916–917 (1998). CAS Google Scholar
Watkins, P. B. et al. Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease. JAMA271, 992–998 (1994). CASPubMed Google Scholar
Blackard, W. G., Sood, G. K., Cowe, D. R. & Fallon, M. B. Tacrine: a cause of fatal hepatotoxicity? J. Clin. Gastroenterol.26, 57–59 (1998). PubMed Google Scholar
Lee, W. M. et al. Hepatic findings in long-term clinical trials of ximelagatran. Drug Saf.28, 351–370 (2005). CASPubMed Google Scholar
Snider, D. E. & Caras, G. J. Isoniazid-associated hepatitis deaths: a review of available information. Am. Rev. Respir. Dis.145, 494–497 (1992). PubMed Google Scholar
vanHest, R. et al. Hepatotoxicity of rifampin-pyrazinamide and isoniazid preventive therapy and tuberculosis treatment. Clin. Infect. Dis.39, 488–496 (2004). CAS Google Scholar
Willy, M. E. et al. A study of compliance with FDA recommendations for pemoline (Cylert). J. Am. Acad. Child Adolesc. Psychiatry41, 785–790 (2002). PubMed Google Scholar
Graham, D. J. et al. Liver enzyme monitoring in patients treated with troglitazone. JAMA286, 831–833 (2001). CASPubMed Google Scholar
Nolan, C. M., Goldberg, S. V. & Buskin, S. E. Hepatotoxicity associated with isoniazid preventive therapy: a 7-year survey from a public health tuberculosis clinic. JAMA281, 1014–1018 (1999). CASPubMed Google Scholar
Olson, H. et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol.32, 56–67 (2000). CASPubMed Google Scholar
Ulrich, R. G., Rockett, J. C., Gibson, G. G. & Pettit, S. D. Overview of an interlaboratory collaboration on evaluating the effects of model hepatotoxicants on hepatic gene expression. Environ. Health Perspect.112, 423–427 (2004). CASPubMedPubMed Central Google Scholar
Mattes, W. B. et al. Database development in toxicogenomics: issues and efforts. Environ. Health Perspect.112, 495–505 (2004). CASPubMedPubMed Central Google Scholar
Lindon, J. C. et al. Contemporary issues in toxicology: the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol. Appl Pharmacol.187, 137–146 (2003). CASPubMed Google Scholar
Man, W. J. et al. Protein expression analysis of drug-mediated hepatotoxicity in the Sprague-Dawley rat. Proteomics2, 1577–1585 (2002). CASPubMed Google Scholar
Toyoda, Y., Tsuchida, A., Iwami, E. & Miwa, I. Toxic effect of troglitazone on cultured rat hepatocytes. Life Sci.68, 1867–1876 (2001). CASPubMed Google Scholar
Tirmenstein, M. A. et al. Effects of troglitazone on HepG2 viability and mitochondrial function. Toxicol Sci.69, 131–138 (2002). CASPubMed Google Scholar
Lloyd, S. et al. Differential in vitro hepatotoxicity of troglitazone and rosiglitazone among cryopreserved human hepatocytes from 37 donors. Chem. Biol Interact.142, 57–71 (2002). CASPubMed Google Scholar
Shayiq, R. M. et al. Repeat exposure to incremental doses of acetaminophen provides protection against acetaminophen-induced lethality in mice: an explanation for high acetaminophen dosage in humans without hepatic injury. Hepatology29, 451–463 (1999). CASPubMed Google Scholar
Nelson, S. D. & Bruschi, S. A. in Drug-Induced Liver Disease (eds Kaplowitz, N. & DeLeve, L.) 287–325 (Marcel Dekker, New York, 2003). Google Scholar
Lee, S. S. T. et al. Role of Cyp2e1 in the hepatotoxicity of acetaminophen. J. Biol. Chem.271, 12063–12067 (1996). CASPubMed Google Scholar
Burk, R. F., Hill, K. E., Hunt, R. W. & Martin, A. E. Isoniazid potentiation of acetaminophen hepatotoxicity in the rat and 4-methylpyrazole inhibition of it. Res. Commun. Chem. Pathol. Pharmacol.69, 115–118 (1990). CASPubMed Google Scholar
Thummel, K. E. et al. Ethanol and production of the hepatotoxic metabolite of acetaminophen in healthy adults. Clin. Pharm. Ther.67, 591–599 (2000). CAS Google Scholar
Chien, J. Y., Thummel, K. E. & Slattery, J. T. Pharmakinetic consequence of induction of CYP2E1 by ligand stabilization. Drug Metab. Dispos.25, 1165–1175 (1997). CASPubMed Google Scholar
Goldring, C. E. P. et al. Activation of hepatic Nrf2 in vivo by acetaminophen in CD-1 mice. Hepatology39, 1267–1276 (2004). CASPubMed Google Scholar
Chan, K., Han, X. -D. & Kan, Y. W. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc. Natl Acad. Sci. USA98, 4611–4616 (2001). CASPubMedPubMed Central Google Scholar
Ishida, Y. et al. A pivotal involvement if IFN-γ in the pathogenesis of acetaminophen-induced acute liver injury. FASEB J.16, 1227–1236 (2002). CASPubMed Google Scholar
Liu, Z. -X., Govindarajan, S. & Kaplowitz, N. Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. Gastroenterology127, 1760–1774 (2004). CASPubMed Google Scholar
Bourdi, M. et al. Protection against acetaminophen induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology35, 289–298 (2002). CASPubMed Google Scholar
Masubuchi, Y. et al. Role of interleukin-6 in hepatic heat shock protein expression and protection against acetaminophen-induced liver disease. Biochem. Biophys. Res. Commun.304, 207–212 (2003). CASPubMed Google Scholar
Kaplowitz, N. Acetaminophen hepatotoxicity: what we know, what we don't know and where do we go? Hepatology40, 23–26 (2004). PubMed Google Scholar
Nagai, H., Matsumaru, K., Feng, G. & Kaplowitz, N. Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-α-induced apoptosis in cultured mouse hepatocytes. Hepatology36, 55–64 (2002). CASPubMed Google Scholar
Kaplowitz, N. Mechanisms of liver cell injury. J. Hepatol.32, 39–47 (2000). CASPubMed Google Scholar
Park, D. R. et al. Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte-derived macro-phages. J. Immunol.170, 6209–6216 (2003). CASPubMed Google Scholar
Hohlbaum, A. M., Gregory, M. S., Ju, S. T. & Marshak-Rothstein, A. Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J. Immunol.167, 6217–6224 (2001). CASPubMed Google Scholar
Liu, Z. -X. & Kaplowitz, N. in Clinics in Liver Disease6, 467–486 (Elsevier, 2002). Google Scholar
Kaplowitz, N. in Seminars in Liver Disease Vol. 22 (eds Berk, P., Farrell, G. & Liddle, C.) 137–144 (Thieme Medical, New York, 2002). Google Scholar
Vergani, D. et al. Antibodies to the surface of halothane-altered rabbit hepatocytes in patients with severe halothane-associated hepatitis. N. Eng. J. Med.303, 66–71 (1980). CAS Google Scholar
Neuberger, J. & Williams, R. Immune mechanisms in tienilic acid associated hepatotoxicity. Gut30, 515–519 (1989). CASPubMedPubMed Central Google Scholar
Kon, K., Kim, J. -S., Jaeschke, H. & Lemasters, J. J. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology40, 1170–1179 (2004). CASPubMed Google Scholar
Watanabe, I. et al. A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin. Pharm. Ther.73, 435–455 (2003). CAS Google Scholar
Simon, T. et al. Combined glutathione S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin. Pharm. Ther.67, 432–437 (2000). CAS Google Scholar
Acuna, G. et al. Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. The Pharmacogenomics J.2, 327–334 (2002). CASPubMed Google Scholar
Huang, Y. -S. et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculous drug-induced hepatitis. Hepatology37, 924–930 (2003). CASPubMed Google Scholar
Aithal, G. P. et al. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology39, 1430–1440 (2004). CASPubMed Google Scholar
Zhang, J. et al. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science298, 421–424 (2002). Google Scholar
Henderson, C. J. et al. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione _S_-transferase Pi. Proc. Natl Acad. Sci. USA97, 12741–12745 (2000). CASPubMedPubMed Central Google Scholar
Zhang, H. et al. Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nature Biotechnol.18, 862–867 (2000). CAS Google Scholar
Bone-Larson, C. L. et al. IFN-γ-inducible protein-10 (CXCL10) is hepatoprotective during acute liver injury through the induction of CXCR2 on hepatocytes. J. Immunol.167, 7077–7083 (2001). CASPubMed Google Scholar
Hogaboam, C. M. et al. Novel CXCR2-dependent liver regenerative qualities of ELR-containing CXC chemokines. FASEB J.13, 1565–1574 (1999). CASPubMed Google Scholar
Trepicchio, W. L., Bozza, M., Bouchard, P. & Dorner, A. J. Protective effect of rhIL-11 in a murine model of acetaminophen-induced hepatotoxicity. Toxicol. Pathol.29, 242–249 (2001). CASPubMed Google Scholar
Su, G. L. et al. Lipopolysaccharide-binding protein modulates acetaminophen-induced liver injury in mice. Hepatology41, 187–195 (2005). CASPubMed Google Scholar
Jollow, D. J. et al. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther.187, 195–202 (1973). CASPubMed Google Scholar
Reilly, T. P. et al. A protective role for cycloxygenase-2 in drug-induced liver injury in mice. Chem. Res. Toxicol.14, 1620–1628 (2001). CASPubMed Google Scholar
Ju, C. et al. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem. Res. Toxicol.15, 1504–1513 (2002). CASPubMed Google Scholar
Hogaboam, C. M. et al. Exaggerated hepatic injury due to acetaminophen challenge in mice lacking C-C chemokine receptor 2. Am. J. Pathol.156, 1245–1252 (2000). CASPubMedPubMed Central Google Scholar
Hogaboam, C. M. et al. Macrophage inflammatory protein-2 gene therapy attenuates adenovirus- and acetaminophen-mediated hepatic injury. Gene Ther.6, 573–584 (1999). CASPubMed Google Scholar
Tinel, M. et al. Subliminal Fas stimulation increases the hepatotoxicity of acetaminophen and bromobenzene in mice. Hepatology39, 655–666 (2004). CASPubMed Google Scholar
Matsumaru, K., Ji, C. & Kaplowitz, N. Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes. Hepatology37, 1425–1434 (2003). CASPubMed Google Scholar