Drug development for CNS disorders: strategies for balancing risk and reducing attrition (original) (raw)
Pharmaceutical Research and Manufacturers of America (PhRMA). New Medicines in Development for Mental Illness. PhRMA web site[online], (2006).
Pharmaceutical Research and Manufacturers of America (PhRMA). New Medicines in Development for Neurological Disorders. PhRMA web site[online], (2006).
Ferri, C. P. et al. Global prevalence of dementia: a Delphi consensus study. Lancet366, 2112–2117 (2005). PubMedPubMed Central Google Scholar
Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov.3, 711–715 (2004). CAS Google Scholar
Tufts Center for the Study of Drug Development. Longer clinical times are extending time to market for new drugs in US. Tufts CSDD Impact Report7, 1–4 (2005).
Bornstein, N., Silvestrelli, G., Caso, V. & Parnetti, L. Arterial hypertension and stroke prevention: an update. Clin. Exp. Hypertens.28, 317–326 (2006). PubMed Google Scholar
Sato, A., Saruta, T. & Funder J. W. Combination therapy with aldosterone blockade and renin-angiotensin inhibitors confers organ protection. Hypertens. Res.29, 211–216 (2006). CASPubMed Google Scholar
Nitsch, R. M., Slack, B. E., Wurtman, R. J. & Growdon, J. H. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science258, 304–307 (1992). CASPubMed Google Scholar
Pangalos, M. N., Jacobsen, S. J. & Reinhart, P. H. Disease modifying strategies for the treatment of Alzheimer's disease targeted at modulating levels of the β-amyloid peptide. Biochem. Soc. Trans.33, 553–558 (2005). CASPubMed Google Scholar
Dominguez, D. I. & De Strooper, B. Novel therapeutic strategies provide the real test for the amyloid hypothesis of Alzheimer's disease. Trends Pharmacol. Sci.23, 324–330 (2002). CASPubMed Google Scholar
Zhang, L. et al. Characterization of the reconstituted γ-secretase complex from Sf9 cells co-expressing presenilin 1, nicastrin, aph-1a, and pen-2. Biochemistry44, 4450–4457 (2005). CASPubMed Google Scholar
Marambaud, P. et al. A presenilin-1/γ-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J.21, 1948–1956 (2002). CASPubMedPubMed Central Google Scholar
Roberds, S. L. et al. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum. Mol. Genet.10, 1317–1324 (2001). CASPubMed Google Scholar
Hong, L. et al. Crystal structure of memapsin 2 (β-secretase) in complex with an inhibitor OM00–3. Biochemistry41, 10963–10967 (2002). CASPubMed Google Scholar
Booth, B. & Zemmel, R. Prospects for productivity. Nature Rev. Drug Discov.3, 451–456 (2004). CAS Google Scholar
Hornig, C. R. et al. CT contrast enhancement on brain scans and blood–CSF barrier disturbances in cerebral ischemic infarction. Stroke16, 268–273 (1985). CASPubMed Google Scholar
Papadopoulos, C. M. et al. Dendritic plasticity in the adult rat following middle cerebral artery occlusion and Nogo-a neutralization. Cereb. Cortex16, 529–536 (2006). PubMed Google Scholar
Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400, 173–177 (1999). CASPubMed Google Scholar
Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med.6, 916–919 (2000). CASPubMed Google Scholar
Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.)82, 239–259 (1991). CAS Google Scholar
Reddy, P. & Beal, M. Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res. Brain Res. Rev.49, 618–632 (2005). CASPubMed Google Scholar
Kivipelto, M. et al. Apolipoprotein E ɛ4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann. Intern. Med.137, 149–155 (2002). CASPubMed Google Scholar
Brunton, V. G. et al. Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res.65, 1335–1342 (2005). CASPubMed Google Scholar
Paul, R. et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nature Med.7, 222–227 (2001). CASPubMed Google Scholar
Lebovitz, H. Diabetes: assessing the pipeline. Atheroscler. Suppl.7, 43–49 (2006). PubMed Google Scholar
Feinstein, D. L. et al. Peroxisome proliferator-activated receptor-γ agonists prevent experimental autoimmune encephalomyelitis. Ann. Neurol.51, 694–702 (2002). CASPubMed Google Scholar
Heneka, M. T., Landreth, G. E. & Feinstein, D. L. Role for peroxisome proliferator-activated receptor-γ in Alzheimer's disease. Ann. Neurol.49, 276 (2001). CASPubMed Google Scholar
Rosenzweig-Lipson, S. et al. Antiobesity-like effects of the 5-HT2C receptor agonist WAY-161503. Brain Res.1073–1074, 240–251 (2006). PubMed Google Scholar
Schechter, L. et al. Innovative approaches for the development of antidepressant drugs: current and future strategies. NeuroRx2, 590–611 (2005). PubMedPubMed Central Google Scholar
Porter R. H. et al. A clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J. Pharmacol. Exp. Ther.315, 711–721 (2005). CASPubMed Google Scholar
Miyamoto, S., Duncan, G. E., Marx, C. E. & Lieberman, J. A. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry10, 79–104 (2005). CASPubMed Google Scholar
Braff, D. L. L., G. A. . The use of neurophysiological endophenotypes to understand the genetic basis of schizophrenia. Dialogues Clin. Neurosci.7, 125–135 (2005). PubMedPubMed Central Google Scholar
Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke30, 2752–2758 (1999).
Lees, K. R. et al. NXY-059 for acute ischemic stroke. N. Engl. J. Med.354, 588–600 (2006). CASPubMed Google Scholar
Ireland, R. Is NXY-059 beneficial in ischemic stroke? Nature Clin. Pract. Cardiovasc. Med.3, 240–241 (2006). Google Scholar
Fong, J. J. & Rhoney, D. H. NXY-059: review of neuroprotective potential for acute stroke. Ann. Pharmacother.40, 461–471 (2006). CASPubMed Google Scholar
[No Authors Listed]. The Bitterest pill. Nature444, 532–533 (2006).
Leow, A. D. et al. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage31, 627–640 (2006). PubMed Google Scholar
Schenk, D., Games, K. D. & McConlogue, L. The potential utility of transgenic mice harboring β-amyloid precursor protein. Neurobiol. Aging16, 711–713 (1995). CASPubMed Google Scholar
Bloom, F. E. et al. Mouse models of human neurodegenerative disorders: requirements for medication development. Arch. Neurol.62, 185–187 (2005). PubMed Google Scholar
Harrison, S. M. et al. BACE1 (β-secretase) transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Mol. Cell. Neurosci.24, 646–55 (2003). CASPubMed Google Scholar
Laird, F. M. et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J. Neurosci.25, 11693–11709 (2005). CASPubMedPubMed Central Google Scholar
Roher, A. E. & Kokjohn, T. A. Appraisal of AβPP transgenic mice as models for Alzheimer's disease amyloid cascade. Curr. Med. Chem.3, 85–90 (2003). CAS Google Scholar
Lehmann, H. E. & Ban, T. A. The history of the psychopharmacology of schizophrenia. Can. J. Psychiatry42, 152–162 (1997). CASPubMed Google Scholar
Janssen, P. A., Niemegeers, C. J. & Schellekens, K. H. Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data?I. 'Neuroleptic Activity Spectra' for rats. Arzneimittelforschung.15, 104–117 (1965). CASPubMed Google Scholar
Costall, B., Naylor, R. J. & Nohria, V. Climbing behaviour induced by apomorphine in mice: a potential model for the detection of neuroleptic activity. Eur. J. Pharmacol.50, 39–50 (1978). CASPubMed Google Scholar
Braff, D. L. & Geyer, M. A. Sensorimotor gating and schizophrenia. Human and animal model studies. Arch. Gen. Psychiatry47, 181–188 (1990). CASPubMed Google Scholar
Lipska, B. & Weinberger, D. To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology23, 223–239 (2000). CASPubMed Google Scholar
Cryan, J., Markou, A. & Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol. Sci.23, 238–245 (2002). CASPubMed Google Scholar
Rupniak, N. M. & Kramer, M. S. Discovery of the antidepressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. Trends Pharmacol. Sci.20, 485–490 (1999). CASPubMed Google Scholar
Herpfer, I. & Lieb, K. Substance P receptor antagonists in psychiatry: rationale for development and therapeutic potential. CNS Drugs19, 275–293 (2005). CASPubMed Google Scholar
Ranga, K. & Krishnan, R. Clinical experience with substance P receptor (NK1) antagonists in depression. J. Clin. Psychiatry.63 (Suppl. 11), 25–29 (2002). CASPubMed Google Scholar
Frank, R. & Hargreaves, R. Clinical biomarkers in drug discovery and development. Nature Rev. Drug Discov.2, 566–280 (2003). CAS Google Scholar
Nestler, E. et al. Preclinical models: Status of basic research in depression. Biol. Psychiatry52, 503–528 (2002). PubMed Google Scholar
Risch, N. & Botstein, D. A manic depressive history. Nature Genet.12, 351–353 (1996). CASPubMed Google Scholar
Terwilliger, J. On the resolution and feasibility of genome scanning approaches. Adv. Genet.42, 351–391 (2001). CASPubMed Google Scholar
Harrison, P. & Weinberger, D. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry10, 40–68 (2005). CASPubMed Google Scholar
Kamiya, A. et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex: development. Nature Cell Biol.7, 1167–1178 (2005). PubMed Google Scholar
Rawlins, M. D. Cutting the cost of drug development? Nature Rev. Drug Discov.3, 360–364 (2004). CAS Google Scholar
Sheiner, L. Learning versus confirming in clinical drug development. Clin. Pharm. Ther.61, 275–291 (1997). CAS Google Scholar
Whalley, L., Deary, I., Appleton, C. & Starr, J. Cognitive reserve and the neurobiology of cognitive aging. Ageing Res. Rev.3, 369–382 (2004). PubMed Google Scholar
Winblad, B. & Poritis, N. Memantine in severe dementia: results of the 9M-Best Study (Benefit and efficacy in severely demented patients during treatment with memantine). Int. J. Geriatr. Psychiatry14, 135–146 (1999). CASPubMed Google Scholar
Rush, A. J. et al. Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N. Engl. J. Med.354, 1231–1242 (2006). CASPubMed Google Scholar
Trivedi, M. H. et al. Medication augmentation after the failure of SSRIs for depression. N. Engl. J. Med.354, 1243–1252 (2006). CASPubMed Google Scholar
Wolf, C. R. & Smith, G. Cytochrome P450 CYP2D6. IARC Sci. Publ.148, 209–229 (1999). CAS Google Scholar
Emilien, G., Ponchon, M., Caldas, C., Isacson, O. & Maloteaux, J. M. Impact of genomics on drug discovery and clinical medicine. Q. J. Med.93, 391–423 (2000). CAS Google Scholar
Poulsen, L. et al. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur. J. Clin. Pharmacol.51, 289–295 (1996). CASPubMed Google Scholar
Defilippi, J. L. & Crismon, M. L. Drug interactions with cholinesterase inhibitors. Drugs Aging20, 437–444 (2003). CASPubMed Google Scholar
Smeraldi, E. et al. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol. Psychiatry3, 508–511 (1998). CASPubMed Google Scholar
Lane, H. Y. et al. Association of risperidone treatment response with a polymorphism in the 5-HT(2A) receptor gene. Am. J. Psychiatry159, 1593–1595 (2002). PubMed Google Scholar
Roses, A. D. et al. Complex disease-associated pharmacogenetics: drug efficacy, drug safety, and confirmation of a pathogenetic hypothesis (Alzheimer's disease). Pharmacogenomics J.7, 10–28 (2007). CASPubMed Google Scholar
Tsuang, M. T. & Faraone, S. V. Genetics of Alzheimer's disease. J. Formos. Med. Assoc.95, 733–740 (1996). CASPubMed Google Scholar
Klimas, M. Positron emission tomography and drug discovery: contributions to the understanding of pharmacokinetics, mechanism of action and disease state characterization. Mol. Imaging Biol.4, 311–337 (2002). PubMed Google Scholar
Dawson, D. A., Wadsworth, G. & Palmer, A. M. A comparative assessment of the efficacy and side-effect liability of neuroprotective compounds in experimental stroke. Brain Res.892, 344–350 (2001). CASPubMed Google Scholar
Matsuoka, Y. et al. An Aβ sequestration approach using non-antibody Aβ binding agents. Curr. Alzheimer Res.2, 265–268 (2005). CASPubMed Google Scholar
Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science300, 486–489 (2003). CASPubMed Google Scholar
Motter, R. et al. Reduction of β-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer's disease. Ann. Neurol.38, 643–648 (1995). CASPubMed Google Scholar
Lewczuk, P. et al. Tau protein phosphorylated at threonine 181 in CSF as a neurochemical biomarker in Alzheimer's disease: Original data and review of the literature. J. Mol. Neurosci.23, 115–122 (2004). CASPubMed Google Scholar
Pratico, D. & Sung, S. Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer's disease. J. Alzheimers Dis.6, 171–175 (2004). CASPubMed Google Scholar
Renna, M., Handy, J. & Shah, A. Low baseline Bispectral Index of the electroencephalogram in patients with dementia. Anesth. Analg.96, 1380–1385 (2003). PubMed Google Scholar
LeBlanc, J., Dasta, J. & Kane-Gill, S. Role of the bispectral index in sedation monitoring in the ICU. Ann. Pharmacother.40, 490–500 (2006). PubMed Google Scholar
Herrmann, C. & Demiralp, T. Human EEG γ oscillations in neuropsychiatric disorders. Clin. Neurophysiol.116, 2719–2733 (2005). CASPubMed Google Scholar
Mohs, R. et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer's Disease Assessment Scale that broaden its scope. The Alzheimer's Disease Cooperative Study. Alzheimer Dis. Assoc. Disord.11 (Suppl. 2), 13–21 (1997). Google Scholar
Solomon, P. et al. Classical conditioning in patients with Alzheimer's disease: a multiday study. Psychol. Aging10, 248–254 (1995). CASPubMed Google Scholar
Skelton, R., Ross, S., Nerad, L. & Livingstone, S. Human spatial navigation deficits after traumatic brain injury shown in the arena maze, a virtual Morris water maze. Brain Inj.20, 189–203 (2006). PubMed Google Scholar
Pariente, J. et al. Alzheimer's patients engage an alternative network during a memory task. Ann Neurol58, 870–879 (2005). PubMed Google Scholar
Frank, R. A. et al. Biological markers for therapeutic trials in Alzheimer's disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer's disease. Neurobiol. Aging24, 521–536 (2003). PubMed Google Scholar
Klunk, W. et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-β in Alzheimer's disease brain but not in transgenic mouse brain. J. Neurosci.25, 10598–10606 (2005). CASPubMedPubMed Central Google Scholar
Kung, M., Zhuang, Z., Hou, C. & Kung, H. Development and evaluation of iodinated tracers targeting amyloid plaques for SPECT imaging. J. Mol. Neurosci.24, 49–53 (2004). CASPubMed Google Scholar
Versijpt, J. et al. Assessment of neuroinflammation and microglial activation in Alzheimer's disease with radiolabelled PK11195 and single photon emission computed tomography. A pilot study. Eur. Neurol.50, 39–47 (2003). CASPubMed Google Scholar
Johnson, N. et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology234, 851–859 (2005). PubMed Google Scholar
Han, S., Nestor, P. & Wible, C. fMRI of lexical-semantic priming in a chronic schizophrenia patient. Appl. Neuropsychol.13, 51–57 (2006). PubMed Google Scholar
Chudasama, Y. & Robbins, T. W. Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology29, 1628–1636 (2004). CASPubMed Google Scholar
Spinelli, S. et al. Performance of the marmoset monkey on computerized tasks of attention and working memory. Brain Res. Cogn. Brain Res.19, 123–137 (2004). PubMed Google Scholar
Spinelli, S. et al. Effects of the mGluR2/3 agonist LY354740 on computerized tasks of attention and working memory in marmoset monkeys. Psychopharmacology (Berl.)179, 292–302 (2005). CAS Google Scholar
Olson, H. et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol.32, 56–67 (2000). CASPubMed Google Scholar
Huby, R. & Tugwood, J. D. Gene expression profiling for pharmaceutical safety assessment. Expert Opin. Drug Metab. Toxicol.1, 247–260 (2005). CASPubMed Google Scholar
O'Toole, M. et al. Risk factors associated with β-amyloid(1–42) immunotherapy in preimmunization gene expression patterns of blood cells. Arch. Neurol.62, 1531–1536 (2005). PubMed Google Scholar
Davies, P. & Maloney, A. J. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet2, 1403 (1976). CASPubMed Google Scholar
Bowen, D. M., Smith, C. B., White, P. & Davison, A. N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain99, 459–496 (1976). CASPubMed Google Scholar
Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet1, 189 (1977). CASPubMed Google Scholar
Whitehouse, P. J. et al. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science215, 1237–1239 (1982). CASPubMed Google Scholar
Bartus, R. T., Dean, R. L. 3rd, Beer, B. & Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science217, 408–414 (1982). CASPubMed Google Scholar
Ferrante, R. J., Kowall, N. W. & Richardson, E. P. Jr . Proliferative and degenerative changes in striatal spiny neurons in Huntington's disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J. Neurosci.11, 3877–3887 (1991). CASPubMedPubMed Central Google Scholar
Francis, P. T. et al. Antemortem measurements of neurotransmission: possible implications for pharmacotherapy of Alzheimer's disease and depression. J. Neurol. Neurosurg. Psychiatry56, 80–84 (1993). CASPubMedPubMed Central Google Scholar
Schechter, L. et al. Lecozotan (SRA-333): A selective serotonin 1A receptor antagonist that enhances the stimulated release of glutamate and acetylcholine in the hippocampus and possesses cognitive-enhancing properties. J. Pharmacol. Exp. Ther.314, 1274–1289 (2005). CASPubMed Google Scholar
King, M. V. et al. 5-HT6 receptor antagonists reverse delay-dependent deficits in novel object discrimination by enhancing consolidation — an effect sensitive to NMDA receptor antagonism. Neuropharmacology47, 195–204 (2004). CASPubMed Google Scholar
Komater, V. A. et al. H3 receptor blockade by thioperamide enhances cognition in rats without inducing locomotor sensitization. Psychopharmacology (Berl.)167, 363–372 (2003). CAS Google Scholar
Selkoe, D. J. & Schenk, D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol.43, 545–584 (2003). CASPubMed Google Scholar
St George-Hyslop, P. H. & Petit, A. Molecular biology and genetics of Alzheimer's disease. C. R. Biol.328, 119–130 (2005). CASPubMed Google Scholar
Podlisny, M. B., Lee, G. & Selkoe, D. J. Gene dosage of the amyloid β precursor protein in Alzheimer's disease. Science238, 669–671 (1987). CASPubMed Google Scholar
DeMattos, R. B. et al. ApoE and clusterin cooperatively suppress Aβ levels and deposition. Evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron41, 193–202 (2004). CASPubMed Google Scholar
Klein, W. L. Aβ toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem. Int.41, 345–352 (2002). CASPubMed Google Scholar
Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature440, 352–357 (2006). CASPubMed Google Scholar
Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature416, 535–539 (2002). CASPubMed Google Scholar
Jacobsen, J. S., Reinhart, P. & Pangalos, M. N. Current concepts in therapeutic strategies targeting cognitive decline and disease modification in Alzheimer's disease. NeuroRx2, 612–626 (2005). PubMedPubMed Central Google Scholar
Carlsson, A., Jonason, J., Lindqvist, M. & Fuxe, K. Demonstration of extraneuronal 5-hydroxytryptamine accumulation in brain following membrane-pump blockade by chlorimipramine. Brain Res.2, 456–460 (1969). Google Scholar
Goodwin, F. & Bunney, W. J. Depressions following reserpine: A reevaluation. Semin. Psychiatry3, 435–448 (1971). CASPubMed Google Scholar
Hirschfeld, R. History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry61, 4–6 (2000). CASPubMed Google Scholar
Artigas, F., Romero, L., de Montigny, C. & Blier, P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci.19, 378–383 (1996). CASPubMed Google Scholar
Merikangas, K. & Risch, N. Will the genomics revolution revolutionize psychiatry? Am. J. Psychiatry160, 625–635 (2003). PubMed Google Scholar
Hasler, G., Drevets, W., Manji, H. & Charney, D. Discovering endophenotypes for major depression. Neuropsychopharmacology29, 1765–1781 (2004). CASPubMed Google Scholar
Kinney, D. et al. Season of birth and obstetrical complications in schizophrenics. J. Psychiatr. Res.28, 499–509 (1994). CASPubMed Google Scholar
Kelly, B., Lane, A., Agartz, I., Henriksson, K. & McNeil, T. Craniofacial dysmorphology in Swedish schizophrenia patients. Acta Psychiatr. Scand.111, 202–207 (2005). CASPubMed Google Scholar
Sheline, Y., Gado, M. & Kraemer, H. Untreated depression and hippocampal volume loss. Am. J Psychiatry160, 1516–1518 (2003). PubMed Google Scholar
Sheline, Y., Wang, P., Gado, M., Csernansky, J. & Vannier, M. Hippocampal atrophy in recurrent major depression. Proc. Natl Acad. Sci. USA93, 3908–3913 (1996). CASPubMedPubMed Central Google Scholar
Malberg, J., Eisch, A., Nestler, E. & Duman, R. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci.20, 9104–9110 (2000). CASPubMedPubMed Central Google Scholar