Molecular basis for sunitinib efficacy and future clinical development (original) (raw)
Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285, 1182–1186 (1971). ArticleCASPubMed Google Scholar
Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl Cancer Inst.82, 4–6 (1990). ArticleCASPubMed Google Scholar
Cherrington, J. M., Strawn, L. M. & Shawver, L. K. New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv. Cancer Res.79, 1–38 (2000). ArticleCASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Faivre, S., Djelloul, S. & Raymond, E. New paradigms in anticancer therapy: targeting multiple signalling pathways with kinase inhibitors. Semin. Oncol.33, 407–420 (2006). ArticleCASPubMed Google Scholar
Motzer, R. J. et al. Sunitinib versus interferon α in metastatic renal-cell carcinoma. N. Engl. J. Med.356, 115–124 (2007). A pivotal study demonstrating the superiority of sunitinib over the previous standard of care in advanced RCC, for example IFNα. ArticleCASPubMed Google Scholar
Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomized controlled trial. Lancet368, 1329–1338 (2006). A pivotal study demonstrating the antitumour activity of sunitinib in patients with GIST resistant to imatinib, a situation that had no previous standard treatment. ArticleCASPubMed Google Scholar
Humar R., Kiefer, F. N., Berns, H. & Battegay, E. J. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR-)dependent signaling. FASEB J.16, 771–780 (2002). ArticleCASPubMed Google Scholar
Lewis, C. & Murdoch, C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am. J. Pathol.167, 627–635 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nature Med.8, 841–849 (2002). ArticleCASPubMed Google Scholar
Rehman, J., Li, J., Orschell, C. M. & March, K. L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation.107, 1164–1169 (2003). ArticlePubMed Google Scholar
Hida, K. et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res.64, 8249–8255 (2004). ArticleCASPubMed Google Scholar
Hicklin, D. J. & Ellis, L. M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol.23, 1–17 (2005). Article Google Scholar
Erber, R. et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J.18, 338–340 (2004). ArticleCASPubMed Google Scholar
Cao, Y. Emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nature Rev. Cancer5, 735–743 (2005). ArticleCAS Google Scholar
Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion and metastasis. Cell124, 263–266 (2006). This recent review points out the crucial role of macrophages for tumour cell migration and initiation of angiogenesis. ArticleCASPubMed Google Scholar
Adini, A., Kornaga, T., Firoozbakht, F. & Benjamin, L. E. Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res.62, 2749–2752 (2002). CASPubMed Google Scholar
Grimshaw, M. J., Naylor, S. & Balkwill, F. R. Endothelin-2 is a hypoxia-induced autocrine survival factor for breast tumor cells. Mol. Cancer Ther.1, 1273–1281 (2002). CASPubMed Google Scholar
Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer.3, 401–410 (2003). ArticleCASPubMed Google Scholar
Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med.350, 2335–2342 (2004). ArticleCASPubMed Google Scholar
Mendel, D. B. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res.9, 327–337 (2003). CASPubMed Google Scholar
Sun, L. et al. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem.46, 1116–1119 (2003). ArticleCASPubMed Google Scholar
Osusky, K. L. et al. The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels. Angiogenesis7, 225–233 (2004). ArticleCASPubMed Google Scholar
Duensing, A., Heinrich, M. C., Fletcher, C. D. & Fletcher, J. A. Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer Invest.22, 106–116 (2004). ArticleCASPubMed Google Scholar
Ichihara, M., Murakumo, Y. & Takahashi, M. RET and neuroendocrine tumors. Cancer Lett.204, 197–211 (2004). ArticleCASPubMed Google Scholar
Sapi, E. The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp. Biol. Med.229, 1–11 (2004). ArticleCAS Google Scholar
Baratte, S. et al. Quantitation of SU11248, an oral multi-target tyrosine kinase inhibitor, and its metabolite in monkey tissues by liquid chromatograph with tandem mass spectrometry following semi-automated liquid-liquid extraction. J. Chromatogr. A1024, 87–94 (2004). ArticleCASPubMed Google Scholar
Abrams, T. J. et al. SU11248 inhibits KIT and platelet-derived growth factor receptor β in preclinical models of human small cell lung cancer. Mol. Cancer Ther.2, 471–478 (2003). ArticleCASPubMed Google Scholar
Murray, L. J. et al. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin. Exp. Metastasis20, 757–766 (2003). ArticleCASPubMed Google Scholar
O'Farrell, A. M. et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood101, 3597–3605 (2003). ArticleCASPubMed Google Scholar
Faivre, S. et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol.24, 25–35 (2006). A report on the first in man experience (Phase I trial) using sunitinib in patients with advanced cancers; identifies tumour types that benefited from sunitinib including RCC, imatinib-resistant GIST and NETs. ArticleCASPubMed Google Scholar
Motzer, R. J., Hoosen, S., Bello, C. L. & Christensen, J. G. Sunitinib malate for the treatment of solid tumors: a review of current clinical data. Expert Opin. Investig. Drugs15, 553–561 (2006). ArticleCASPubMed Google Scholar
Motzer, R. J. et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol.24, 16–24 (2006). ArticleCASPubMed Google Scholar
Motzer, R. J. et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA295, 2516–2524 (2006). ArticleCASPubMed Google Scholar
Motzer R. J. et al. Sunitinib versus interferon-α (IFN-α) as first-line treatment of metastatic renal cell carcinoma (mRCC): updated results and analysis of prognostic factors. J. Clin. Oncol.25 (Suppl. 18), 5024 (2007). Google Scholar
Judson, I. R., et al. Updated results from a Phase III trial of sunitinib in advanced gastrointestinal stromal tumor (GIST). Ann. Oncol.17 (Suppl. 9), ix162 (2006). Google Scholar
Dileo, P. et al. Updated results from a 'treatment-use' trial of sunitinib in advanced gastrointestinal stromal tumor (GIST). Ann. Oncol.17 (Suppl. 9), ix162 (2006). Google Scholar
Miller, K. D. et al. Safety and efficacy of sunitinib malate (SU11248) as second-line therapy in metastatic breast cancer (MBC) patients: preliminary results from a Phase II study. Eur. J. Cancer Suppl.3, 113–114 (2005). Google Scholar
Kulke, M. et al. Results of a Phase II study with sunitinib malate (SU11248) in patients (pts) with advanced neuroendocrine tumours (NETS). Eur. J. Cancer Suppl.3,204 (2005).
Socinski, M. A. et al. Efficacy and safety of sunitinib in previously treated, advanced non-small cell lung cancer (NSCLC): preliminary results of a multicenter Phase II trial. J. Clin. Oncol.24 (Suppl. 18),7001 (2006). Google Scholar
Socinski, M. A. et al. Efficacy and safety of sunitinib in a multicenter Phase II trial of previously treated, advanced non-small cell lung cancer (NSCLC). Ann. Oncol.17 (Suppl. 9), ix218 (2006). Google Scholar
Faivre, S. et al. Assessment of safety and drug-induced tumor necrosis with sunitinib in patients (pts) with unresectable hepatocellular carcinoma (HCC). J. Clin. Oncol.25 (Suppl. 18), 3546 (2007). Google Scholar
Blay, J-Y . et al. Clinical benefit of continuous daily dosing of sunitinib in patients (pts) with advanced gastrointestinal stromal tumor (GIST). Ann. Oncol.17 (Suppl. 9), ix163 (2006). Google Scholar
Escudier, B. et al. Continuous daily administration of sunitinib malate (SU11248) – a Phase II study in patients (pts) with cytokine-refractory metastatic renal cell carcinoma (mRCC). Ann. Oncol.17 (Suppl. 9), ix144 (2006). Google Scholar
Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004). ArticleCASPubMed Google Scholar
Debiec-Rychter, M. et al. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on Phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur. J. Cancer.40, 689–695 (2004). ArticleCASPubMed Google Scholar
Morimoto, A. M. et al. Gene expression profiling of human colon xenograft tumors following treatment with SU11248, a multitargeted tyrosine kinase inhibitor. Oncogene23, 1618–1626 (2004). ArticleCASPubMed Google Scholar
Jubb, A. M, Oates, A. J., Holden, S. & Koeppen, H. Predicting benefits from anti-angiogenic agents in malignancy. Nature Rev. Cancer6, 626–635 (2006). A comprehensive review summarizing the recent findings on potential biological and radiological end points that may be considered to predict benefit from anti-angiogenic therapy. ArticleCAS Google Scholar
DePrimo, S. et al. The multitargeted kinase inhibitor sunitinib malate (SU11248): soluble protein biomarkers of pharmacodynamic activity in patients with metastatic renal cell cancer. Eur. J. Cancer. Suppl.3,420 (2005).
Bello, C. et al. Analysis of circulating biomarkers of sunitinib malate in patients with unresectable neuroendocrine tumors (NET): VEGF, IL-8, and soluble VEGF receptors 2 and 3. J. Clin. Oncol.24 (Suppl. 18), 4045 (2006). Google Scholar
DePrimo, S. E. et al. Effect of treatment with sunitinib malate, a multitargeted tyrosine kinase inhibitor, on circulating plasma levels of VEGF, soluble VEGF receptors 2 and 3, and soluble KIT in patients with metastatic breast cancer. J. Clin. Oncol.24 (Suppl. 18), 578 (2006). Google Scholar
Norden-Zfoni, A. et al. Circulating endothelial cells and monocytes as markers of sunitinib malate (SU11248) activity in patients with imatinib mesylate-resistant GIST. Eur. J. Cancer Suppl.3, 423 (2005). Google Scholar
Van den Abbeele, A. D. et al. FDG-PET imaging demonstrates kinase target inhibition by sunitinib malate (SU11248) in GIST patients resistant to or intolerant of imatinib mesylate. Eur. J. Cancer Suppl.3, 202–203 (2005). Google Scholar
Davis D. W. et al. Receptor tyrosine kinase activity and apoptosis in gastrointestinal stromal tumors: a pharmacodynamic analysis of response to sunitinib malate (SU11248) therapy. Eur. J. Cancer Suppl.3, 203 (2005). Google Scholar
Bukowski R. M. et al. Final results of the randomized Phase III trial of sorafenib in advanced renal cell carcinoma: survival and biomarker analysis. J. Clin. Oncol.25 (Suppl. 18),5023 (2007).
Abou-alfa J. K. et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol, 24, 4293–4300 (2006). ArticleCASPubMed Google Scholar
Casanovas, O., Hickling, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF-signaling in late-stage pancreatic islet tumors. Cancer Cell8, 299–309 (2005). An important contribution on how tumours may escape from VEGF/VEGFR inhibition, and the potential implication of FGF/FGFR. ArticleCASPubMed Google Scholar
Huang, J. et al. Vascular remodeling tumors that recur during chronic suppression of angiogenesis. Mol. Cancer Res.2, 36–42 (2004). An interesting paper investigating the role of PDGFR in animal models exposed to VEGF/VEGFR inhibition. CASPubMed Google Scholar
Ronnen, E. A. et al. A Phase I study of sunitinib malate (SU11248) in combination with gefitinib in patients with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol.24,4537 (2006).
Verhoef, C., de Wilt, J. H. W. & Verheul, H. M. W. Angiogenesis inhibitors: perspectives for medical, surgical and radiation oncology. Curr. Pharm. Des.12, 2623–2630 (2006). ArticleCASPubMed Google Scholar
Raut, C. P. et al. Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. J. Clin. Oncol.24, 2325–2331 (2006). ArticleCASPubMed Google Scholar