Novel therapeutic applications of cardiac glycosides (original) (raw)
Schatzmann, H. J. & Rass, B. Inhibition of the active Na-K-transport and Na-K-activated membrane ATP-ase of erythrocyte stroma by ouabain. Helv. Physiol. Pharmacol. Acta65, C47–C49 (1965) (in German). CASPubMed Google Scholar
Rahimtoola, S. H. & Tak, T. The use of digitalis in heart failure. Curr. Probl. Cardiol.21, 781–853 (1996). CASPubMed Google Scholar
Xie, Z. & Askari, A. Na+/K+-ATPase as a signal transducer. Eur. J. Biochem.269, 2434–2439 (2002). CASPubMed Google Scholar
Aizman, O. & Aperia, A. Na, K-ATPase as a signal transducer. Ann. NY Acad. Sci.986, 489–496 (2003). CASPubMed Google Scholar
Aperia, A. New roles for an old enzyme: Na, K-ATPase emerges as an interesting drug target. J. Intern. Med.261, 44–52 (2007). CASPubMed Google Scholar
Kometiani, P., Liu, L. & Askari, A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol. Pharmacol.67, 929–936 (2005). CASPubMed Google Scholar
Schoner, W. & Scheiner-Bobis, G. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am. J. Cardiovasc. Drugs7, 173–189 (2007). CASPubMed Google Scholar
Schoner, W. & Scheiner-Bobis, G. Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am. J. Physiol. Cell Physiol.293, C509–C536 (2007). CASPubMed Google Scholar
Schoner, W. Endogenous cardiac glycosides, a new class of steroid hormones. Eur. J. Biochem.269, 2440–2448 (2002). CASPubMed Google Scholar
Mijatovic, T. et al. Cardiotonic steroids on the road to anti-cancer therapy. Biochim. Biophys. Acta1776, 32–57 (2007). An excellent up-to-date review on the anticancer effects of cardiac glycosides. CASPubMed Google Scholar
Winnicka, K., Bielawski, K. & Bielawska, A. Cardiac glycosides in cancer research and cancer therapy. Acta Pol. Pharm.63, 109–115 (2006). CASPubMed Google Scholar
Lopez-Lazaro, M. Digitoxin as an anticancer agent with selectivity for cancer cells: possible mechanisms involved. Expert. Opin. Ther. Targets.11, 1043–1053 (2007). CASPubMed Google Scholar
Mekhail, T. et al. Phase 1 trial of Anvirzel in patients with refractory solid tumors. Invest. New Drugs24, 423–427 (2006). CASPubMed Google Scholar
Newman, R. A., Yang, P., Pawlus, A. D. & Block, K. I. Cardiac glycosides as novel cancer therapeutic agents. Mol. Interv.8, 36–49 (2008). CASPubMed Google Scholar
Mijatovic, T. et al. Cardenolide-induced lysosomal membrane permeabilization demonstrates therapeutic benefits in experimental human non-small cell lung cancers. Neoplasia8, 402–412 (2006). CASPubMedPubMed Central Google Scholar
Schonfeld, W. et al. The lead structure in cardiac glycosides is 5β,14β-androstane-3β14-diol. Naunyn Schmiedebergs Arch. Pharmacol.329, 414–426 (1985). CASPubMed Google Scholar
Melero, C. P., Medardea, M. & Feliciano, A. S. A short review on cardiotonic steroids and their aminoguanidine analogues. Molecules5, 51–81 (2000). CAS Google Scholar
Langenhan, J. M., Peters, N. R., Guzei, I. A., Hoffmann, F. M. & Thorson, J. S. Enhancing the anticancer properties of cardiac glycosides by neoglycorandomization. Proc. Natl Acad. Sci. USA102, 12305–12310 (2005). The first report on neoglycorandomization as a novel high-throughput method to study the relationship between attached sugars and the biological activity of cardiac glycosides. CASPubMed Google Scholar
Steyn, P. S. & van Heerden, F. R. Bufadienolides of plant and animal origin. Nat. Prod. Rep.15, 397–413 (1998). CASPubMed Google Scholar
Mathews, W. R. et al. Mass spectral characterization of an endogenous digitalislike factor from human plasma. Hypertension17, 930–935 (1991). CASPubMed Google Scholar
Goto, A., Yamada, K., Ishii, M. & Sugimoto, T. Digitalis-like activity in human plasma: relation to blood pressure and sodium balance. Am. J. Med.89, 420–426 (1990). CASPubMed Google Scholar
Weidemann, H. Na/K-ATPase, endogenous digitalis like compounds and cancer development — a hypothesis. Front. Biosci.10, 2165–2176 (2005). CASPubMed Google Scholar
Hamlyn, J. M. et al. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. USA88, 6259–6263 (1991). CASPubMed Google Scholar
Schneider, R. et al. Bovine adrenals contain, in addition to ouabain, a second inhibitor of the sodium pump. J. Biol. Chem.273, 784–792 (1998). CASPubMed Google Scholar
Kawamura, A. et al. On the structure of endogenous ouabain. Proc. Natl Acad. Sci. USA96, 6654–6659 (1999). CASPubMed Google Scholar
Komiyama, Y. et al. Identification of endogenous ouabain in culture supernatant of PC12 cells. J. Hypertens.19, 229–236 (2001). CASPubMed Google Scholar
Lichtstein, D. et al. Identification of digitalis-like compounds in human cataractous lenses. Eur. J. Biochem.216, 261–268 (1993). CASPubMed Google Scholar
Bagrov, A. Y. et al. Characterization of a urinary bufodienolide Na+, K+-ATPase inhibitor in patients after acute myocardial infarction. Hypertension31, 1097–1103 (1998). CASPubMed Google Scholar
Schneider, R. et al. Proscillaridin A immunoreactivity: its purification, transport in blood by a specific binding protein and its correlation with blood pressure. Clin. Exp. Hypertens.20, 593–599 (1998). CASPubMed Google Scholar
Qazzaz, H. M., Cao, Z., Bolanowski, D. D., Clark, B. J. & Valdes, R. Jr. De novo biosynthesis and radiolabeling of mammalian digitalis-like factors. Clin. Chem.50, 612–620 (2004). CASPubMed Google Scholar
Kaplan, J. H. Biochemistry of Na, K-ATPase. Annu. Rev. Biochem.71, 511–535 (2002). CASPubMed Google Scholar
Smith, T. W. The fundamental mechanism of inotropic action of digitalis. Therapie44, 431–435 (1989). CASPubMed Google Scholar
Jorgensen, P. L., Hakansson, K. O. & Karlish, S. J. Structure and mechanism of Na, K-ATPase: functional sites and their interactions. Annu. Rev. Physiol.65, 817–849 (2003). CASPubMed Google Scholar
Morth, J. P. et al. Crystal structure of the sodium–potassium pump. Nature450, 1043–1049 (2007). The X-ray crystal structure of Na+/K+-ATPase resolved at 3.5 Å. CASPubMed Google Scholar
Qiu, L. Y. et al. Reconstruction of the complete ouabain-binding pocket of Na, K-ATPase in gastric H, K-ATPase by substitution of only seven amino acids. J. Biol. Chem.280, 32349–32355 (2005). CASPubMed Google Scholar
Qiu, L. Y. et al. Conversion of the low affinity ouabain-binding site of non-gastric H, K-ATPase into a high affinity binding site by substitution of only five amino acids. J. Biol. Chem.281, 13533–13539 (2006). CASPubMed Google Scholar
Dostanic-Larson, I. et al. Physiological role of the α1- and α2-isoforms of the Na+-K+-ATPase and biological significance of their cardiac glycoside binding site. Am. J. Physiol. Regul. Integr. Comp. Physiol.290, R524–R528 (2006). CASPubMed Google Scholar
Delprat, B., Bibert, S. & Geering, K. FXYD proteins: novel regulators of Na, K-ATPase. Med. Sci. (Paris)22, 633–638 (2006) (in French). Google Scholar
Geering, K. Function of FXYD proteins, regulators of Na, K-ATPase. J. Bioenerg. Biomembr.37, 387–392 (2005). CASPubMed Google Scholar
Nguyen, A. N., Wallace, D. P. & Blanco, G. Ouabain binds with high affinity to the Na, K-ATPase in human polycystic kidney cells and induces extracellular signal-regulated kinase activation and cell proliferation. J. Am. Soc. Nephrol.18, 46–57 (2007). CASPubMed Google Scholar
Blanco, G. Na, K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin. Nephrol.25, 292–303 (2005). CASPubMed Google Scholar
Sverdlov, E. D. et al. Na+, K+-ATPase: tissue-specific expression of genes coding for α-subunit in diverse human tissues. FEBS Lett.239, 65–68 (1988). CASPubMed Google Scholar
Geering, K. et al. FXYD proteins: new tissue- and isoform-specific regulators of Na, K-ATPase. Ann. NY Acad. Sci.986, 388–394 (2003). CASPubMed Google Scholar
Mobasheri, A. et al. Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci. Rep.20, 51–91 (2000). CASPubMed Google Scholar
Haas, M., Wang, H., Tian, J. & Xie, Z. Src-mediated inter-receptor cross-talk between the Na+/K+-ATPase and the epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J. Biol. Chem.277, 18694–18702 (2002). CASPubMed Google Scholar
Haas, M., Askari, A. & Xie, Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J. Biol. Chem.275, 27832–27837 (2000). CASPubMed Google Scholar
Yuan, Z. et al. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol. Biol. Cell16, 4034–4045 (2005). CASPubMedPubMed Central Google Scholar
Segall, L., Javaid, Z. Z., Carl, S. L., Lane, L. K. & Blostein, R. Structural basis for α1 versus α2 isoform-distinct behavior of the Na, K-ATPase. J. Biol. Chem.278, 9027–9034 (2003). CASPubMed Google Scholar
Liu, L., Abramowitz, J., Askari, A. & Allen, J. C. Role of caveolae in ouabain-induced proliferation of cultured vascular smooth muscle cells of the synthetic phenotype. Am. J. Physiol. Heart Circ. Physiol.287, H2173–H2182 (2004). CASPubMed Google Scholar
Barwe, S. P. et al. Novel role for Na, K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell16, 1082–1094 (2005). CASPubMedPubMed Central Google Scholar
Wang, X. Q. et al. Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J. Cell Sci.116, 2099–2110 (2003). CASPubMed Google Scholar
Aizman, O., Uhlen, P., Lal, M., Brismar, H. & Aperia, A. Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc. Natl Acad. Sci. USA98, 13420–13424 (2001). CASPubMed Google Scholar
Saunders, R. & Scheiner-Bobis, G. Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pump. Eur. J. Biochem.271, 1054–1062 (2004). CASPubMed Google Scholar
Zhang, S. et al. Distinct role of the N-terminal tail of the Na, K-ATPase catalytic subunit as a signal transducer. J. Biol. Chem.281, 21954–21962 (2006). CASPubMed Google Scholar
Liang, M., Cai, T., Tian, J., Qu, W. & Xie, Z. J. Functional characterization of Src-interacting Na/K-ATPase using RNA interference assay. J. Biol. Chem.281, 19709–19719 (2006). CASPubMed Google Scholar
Dolmetsch, R. E., Xu, K. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature392, 933–936 (1998). CAS Google Scholar
Li, J., Zelenin, S., Aperia, A. & Aizman, O. Low doses of ouabain protect from serum deprivation-triggered apoptosis and stimulate kidney cell proliferation via activation of NF-κB. J. Am. Soc. Nephrol.17, 1848–1857 (2006). CASPubMed Google Scholar
Xie, Z. & Cai, T. Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Mol. Interv.3, 157–168 (2003). An excellent review of the signalling properties of the sodium pump, which emphasizes the structural and functional characteristics of the signalosome domain. CASPubMed Google Scholar
Tian, J., Liu, J., Garlid, K. D., Shapiro, J. I. & Xie, Z. Involvement of mitogen-activated protein kinases and reactive oxygen species in the inotropic action of ouabain on cardiac myocytes. A potential role for mitochondrial KATP channels. Mol. Cell Biochem.242, 181–187 (2003). CASPubMed Google Scholar
Yudowski, G. A. et al. Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+, K+-ATPase alpha subunit and regulates its trafficking. Proc. Natl Acad. Sci. USA97, 6556–6561 (2000). CASPubMed Google Scholar
Eva, A., Kirch, U. & Scheiner-Bobis, G. Signaling pathways involving the sodium pump stimulate NO production in endothelial cells. Biochim. Biophys. Acta1758, 1809–1814 (2006). CASPubMed Google Scholar
Xie, Z. et al. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J. Biol. Chem.274, 19323–19328 (1999). CASPubMed Google Scholar
Baudouin-Legros, M., Brouillard, F., Tondelier, D., Hinzpeter, A. & Edelman, A. Effect of ouabain on CFTR gene expression in human Calu-3 cells. Am. J. Physiol. Cell Physiol.284, C620–C626 (2003). CASPubMed Google Scholar
Contreras, R. G., Shoshani, L., Flores-Maldonado, C., Lazaro, A. & Cereijido, M. Relationship between Na+, K+-ATPase and cell attachment. J. Cell Sci.112, 4223–4232 (1999). CASPubMed Google Scholar
Rajasekaran, S. A. et al. Na, K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. Mol. Biol. Cell12, 3717–3732 (2001). CASPubMedPubMed Central Google Scholar
Wang, L., Wible, B. A., Wan, X. & Ficker, E. Cardiac glycosides as novel inhibitors of human ether-a-go-go-related gene channel trafficking. J. Pharmacol. Exp. Ther.320, 525–534 (2007). CASPubMed Google Scholar
Abramowitz, J. et al. Ouabain- and marinobufagenin-induced proliferation of human umbilical vein smooth muscle cells and a rat vascular smooth muscle cell line, A7r5. Circulation108, 3048–3053 (2003). CASPubMed Google Scholar
Aydemir-Koksoy, A., Abramowitz, J. & Allen, J. C. Ouabain-induced signaling and vascular smooth muscle cell proliferation. J. Biol. Chem.276, 46605–46611 (2001). CASPubMed Google Scholar
Stenkvist, B. et al. Evidence of a modifying influence of heart glucosides on the development of breast cancer. Anal. Quant. Cytol.2, 49–54 (1980). CASPubMed Google Scholar
Stenkvist, B. et al. Cardiac glycosides and breast cancer. Lancet1, 563 (1979). CASPubMed Google Scholar
Stenkvist, B. et al. Cardiac glycosides and breast cancer, revisited. N. Engl. J. Med.306, 484 (1982). The first epidemiological report on the anticancer effects of cardiac glycosides. CASPubMed Google Scholar
Goldin, A. G. & Safa, A. R. Digitalis and cancer. Lancet1, 1134 (1984). CASPubMed Google Scholar
Stenkvist, B. Is digitalis a therapy for breast carcinoma? Oncol. Rep.6, 493–496 (1999). CASPubMed Google Scholar
Haux, J., Klepp, O., Spigset, O. & Tretli, S. Digitoxin medication and cancer; case control and internal dose–response studies. BMC Cancer1, 11 (2001). CASPubMedPubMed Central Google Scholar
Haux, J. Digitoxin is a potential anticancer agent for several types of cancer. Med. Hypotheses53, 543–548 (1999). The first analytical description of thein vivoantineoplastic properties of digitoxin against several cancer cell lines. CASPubMed Google Scholar
Shiratori, O. Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: in vitro and in vivo studies. Gann58, 521–528 (1967). CASPubMed Google Scholar
Bielawski, K., Winnicka, K. & Bielawska, A. Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol. Pharm. Bull.29, 1493–1497 (2006). CASPubMed Google Scholar
Lopez-Lazaro, M. et al. Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J. Nat. Prod.68, 1642–1645 (2005). CASPubMed Google Scholar
McConkey, D. J., Lin, Y., Nutt, L. K., Ozel, H. Z. & Newman, R. A. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells. Cancer Res.60, 3807–3812 (2000). CASPubMed Google Scholar
Huang, Y. T., Chueh, S. C., Teng, C. M. & Guh, J. H. Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells. Biochem. Pharmacol.67, 727–733 (2004). CASPubMed Google Scholar
Yeh, J. Y., Huang, W. J., Kan, S. F. & Wang, P. S. Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells. Prostate54, 112–124 (2003). CASPubMed Google Scholar
Newman, R. A. et al. Oleandrin-mediated oxidative stress in human melanoma cells. J. Exp. Ther. Oncol.5, 167–181 (2006). CASPubMed Google Scholar
Newman, R. A. et al. Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr. Cancer Ther.6, 354–364 (2007). CASPubMed Google Scholar
Mijatovic, T. et al. The cardenolide UNBS1450 is able to deactivate nuclear factor κB-mediated cytoprotective effects in human non-small cell lung cancer cells. Mol. Cancer Ther.5, 391–399 (2006). The first report on UNBS 1450, a novel cardiac glycoside derivative with improved anticancer properties. CASPubMed Google Scholar
Frese, S. et al. Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5. Cancer Res.66, 5867–5874 (2006). CASPubMed Google Scholar
Raghavendra, P. B., Sreenivasan, Y., Ramesh, G. T. & Manna, S. K. Cardiac glycoside induces cell death via FasL by activating calcineurin and NF-AT, but apoptosis initially proceeds through activation of caspases. Apoptosis12, 307–318 (2007). CASPubMedPubMed Central Google Scholar
Masuda, Y. et al. Bufalin induces apoptosis and influences the expression of apoptosis-related genes in human leukemia cells. Leuk. Res.19, 549–556 (1995). CASPubMed Google Scholar
Daniel, D., Susal, C., Kopp, B., Opelz, G. & Terness, P. Apoptosis-mediated selective killing of malignant cells by cardiac steroids: maintenance of cytotoxicity and loss of cardiac activity of chemically modified derivatives. Int. Immunopharmacol.3, 1791–1801 (2003). CASPubMed Google Scholar
Jing, Y. et al. Selective inhibitory effect of bufalin on growth of human tumor cells in vitro: association with the induction of apoptosis in leukemia HL-60 cells. Jpn. J. Cancer Res.85, 645–651 (1994). CASPubMedPubMed Central Google Scholar
Kawazoe, N., Watabe, M., Masuda, Y., Nakajo, S. & Nakaya, K. Tiam1 is involved in the regulation of bufalin-induced apoptosis in human leukemia cells. Oncogene18, 2413–2421 (1999). CASPubMed Google Scholar
Watabe, M., Kawazoe, N., Masuda, Y., Nakajo, S. & Nakaya, K. Bcl-2 protein inhibits bufalin-induced apoptosis through inhibition of mitogen-activated protein kinase activation in human leukemia U937 cells. Cancer Res.57, 3097–3100 (1997). CASPubMed Google Scholar
Kulikov, A., Eva, A., Kirch, U., Boldyrev, A. & Scheiner-Bobis, G. Ouabain activates signaling pathways associated with cell death in human neuroblastoma. Biochim. Biophys. Acta1768, 1691–1702 (2007). CASPubMed Google Scholar
Johansson, S. et al. Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells. Anticancer Drugs12, 475–483 (2001). CASPubMed Google Scholar
Van Quaquebeke, E. et al. 2,2,2-Trichloro-_N_-({2-[2-(dimethylamino)ethyl]-1,3-dioxo-2,3-dihydro-1_H_-be nzo[de]isoquinolin- 5-yl}carbamoyl)acetamide (UNBS3157), a novel nonhematotoxic naphthalimide derivative with potent antitumor activity. J. Med. Chem.50, 4122–4134 (2007). CASPubMed Google Scholar
Johnson, P. H. et al. Multiplex gene expression analysis for high-throughput drug discovery: screening and analysis of compounds affecting genes overexpressed in cancer cells. Mol. Cancer Ther.1, 1293–1304 (2002). CASPubMed Google Scholar
Smith, J. A., Madden, T., Vijjeswarapu, M. & Newman, R. A. Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem. Pharmacol.62, 469–472 (2001). CASPubMed Google Scholar
Manna, S. K., Sreenivasan, Y. & Sarkar, A. Cardiac glycoside inhibits IL-8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity. J. Cell Physiol.207, 195–207 (2006). CASPubMed Google Scholar
Lawrence, T. S. Ouabain sensitizes tumor cells but not normal cells to radiation. Int. J. Radiat. Oncol. Biol. Phys.15, 953–958 (1988). CASPubMed Google Scholar
Verheye-Dua, F. & Bohm, L. Na+, K+-ATPase inhibitor, ouabain accentuates irradiation damage in human tumour cell lines. Radiat. Oncol. Investig.6, 109–119 (1998). CASPubMed Google Scholar
Nasu, S., Milas, L., Kawabe, S., Raju, U. & Newman, R. Enhancement of radiotherapy by oleandrin is a caspase-3 dependent process. Cancer Lett.185, 145–151 (2002). CASPubMed Google Scholar
Inada, A. et al. Anti-tumor promoting activities of natural products. II. Inhibitory effects of digitoxin on two-stage carcinogenesis of mouse skin tumors and mouse pulmonary tumors. Biol. Pharm. Bull.16, 930–931 (1993). CASPubMed Google Scholar
Afaq, F., Saleem, M., Aziz, M. H. & Mukhtar, H. Inhibition of 12-_O_-tetradecanoylphorbol-13-acetate-induced tumor promotion markers in CD-1 mouse skin by oleandrin. Toxicol. Appl. Pharmacol.195, 361–369 (2004). CASPubMed Google Scholar
Svensson, A., Azarbayjani, F., Backman, U., Matsumoto, T. & Christofferson, R. Digoxin inhibits neuroblastoma tumor growth in mice. Anticancer Res.25, 207–212 (2005). CASPubMed Google Scholar
Han, K. Q. et al. Anti-tumor activities and apoptosis-regulated mechanisms of bufalin on the orthotopic transplantation tumor model of human hepatocellular carcinoma in nude mice. World J. Gastroenterol.13, 3374–3379 (2007). CASPubMedPubMed Central Google Scholar
Pathak, S., Multani, A. S., Narayan, S., Kumar, V. & Newman, R. A. Anvirzel, an extract of Nerium oleander, induces cell death in human but not murine cancer cells. Anticancer Drugs11, 455–463 (2000). CASPubMed Google Scholar
Ahmed, A. et al. Effects of digoxin at low serum concentrations on mortality and hospitalization in heart failure: a propensity-matched study of the DIG trial. Int. J. Cardiol.123, 138–146 (2008). PubMed Google Scholar
Mohammadi, K., Kometiani, P., Xie, Z. & Askari, A. Role of protein kinase C in the signal pathways that link Na+/K+-ATPase to ERK1/2. J. Biol. Chem.276, 42050–42056 (2001). CASPubMed Google Scholar
Gjesdal, K., Feyzi, J. & Olsson, S. B. Digitalis: a dangerous drug in atrial fibrillation? An analysis of the SPORTIF III and V data. Heart94, 191–196 (2008). CASPubMed Google Scholar
Simpson, R. J. Jr. Assessing the safety of drugs through observational research. Heart94, 129–130 (2008). PubMed Google Scholar
Srivastava, M. et al. Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proc. Natl Acad. Sci. USA101, 7693–7698 (2004). CASPubMed Google Scholar
Wang, J. K. et al. Cardiac glycosides provide neuroprotection against ischemic stroke: discovery by a brain slice-based compound screening platform. Proc. Natl Acad. Sci. USA103, 10461–10466 (2006). The first report on the neuroprotective effects of cardiac glycosides against ischaemic stroke. CASPubMed Google Scholar
Pierre, S. V. et al. Ouabain triggers preconditioning through activation of the Na+, K+-ATPase signaling cascade in rat hearts. Cardiovasc. Res.73, 488–496 (2007). CASPubMed Google Scholar
Piccioni, F., Roman, B. R., Fischbeck, K. H. & Taylor, J. P. A screen for drugs that protect against the cytotoxicity of polyglutamine-expanded androgen receptor. Hum. Mol. Genet.13, 437–446 (2004). CASPubMed Google Scholar
Nesher, M., Shpolansky, U., Rosen, H. & Lichtstein, D. The digitalis-like steroid hormones: new mechanisms of action and biological significance. Life Sci.80, 2093–2107 (2007). CASPubMed Google Scholar
Scheiner-Bobis, G. & Schoner, W. A fresh facet for ouabain action. Nature Med.7, 1288–1289 (2001). CASPubMed Google Scholar
Kaplan, J. H. The sodium pump and hypertension: a physiological role for the cardiac glycoside binding site of the Na, K-ATPase. Proc. Natl. Acad. Sci. USA102, 15723–15724 (2005). CASPubMed Google Scholar
Dostanic-Larson, I., Van Huysse, J. W., Lorenz, J. N. & Lingrel, J. B. The highly conserved cardiac glycoside binding site of Na, K-ATPase plays a role in blood pressure regulation. Proc. Natl Acad. Sci. USA102, 15845–15850 (2005). CASPubMed Google Scholar
Kaplan, J. G. Membrane cation transport and the control of proliferation of mammalian cells. Annu. Rev. Physiol.40, 19–41 (1978). CASPubMed Google Scholar
Espineda, C. et al. Analysis of the Na, K-ATPase alpha- and beta-subunit expression profiles of bladder cancer using tissue microarrays. Cancer97, 1859–1868 (2003). CASPubMed Google Scholar
Lee, S. et al. Identification of genes differentially expressed between gastric cancers and normal gastric mucosa with cDNA microarrays. Cancer Lett.184, 197–206 (2002). CASPubMed Google Scholar
Sakai, H. et al. Up-regulation of Na+, K+-ATPase α3-isoform and down-regulation of the α1-isoform in human colorectal cancer. FEBS Lett.563, 151–154 (2004). CASPubMed Google Scholar
Mijatovic, T. et al. The alpha1 subunit of the sodium pump could represent a novel target to combat non-small cell lung cancers. J. Pathol.212, 170–179 (2007). CASPubMed Google Scholar
Chen, J. Q. et al. Sodium/potassium ATPase (Na+, K+-ATPase) and ouabain/related cardiac glycosides: a new paradigm for development of anti- breast cancer drugs? Breast Cancer Res. Treat.96, 1–15 (2006). CASPubMed Google Scholar
Hashimoto, S. et al. Bufalin reduces the level of topoisomerase II in human leukemia cells and affects the cytotoxicity of anticancer drugs. Leuk. Res.21, 875–883 (1997). CASPubMed Google Scholar
Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer4, 891–899 (2004). CAS Google Scholar
Gatenby, R. A. & Gillies, R. J. Glycolysis in cancer: a potential target for therapy. Int. J. Biochem. Cell Biol.39, 1358–1366 (2007). CASPubMed Google Scholar
Garber, K. Energy deregulation: licensing tumors to grow. Science312, 1158–1159 (2006). CASPubMed Google Scholar
Pelicano, H., Martin, D. S., Xu, R. H. & Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene25, 4633–4646 (2006). CASPubMed Google Scholar
Isidoro, A. et al. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem. J.378, 17–20 (2004). CASPubMedPubMed Central Google Scholar
Rhee, S. G., Yang, K. S., Kang, S. W., Woo, H. A. & Chang, T. S. Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid. Redox. Signal.7, 619–626 (2005). CASPubMed Google Scholar
Paul, R. J., Bauer, M. & Pease, W. Vascular smooth muscle: aerobic glycolysis linked to sodium and potassium transport processes. Science206, 1414–1416 (1979). CASPubMed Google Scholar
Zavareh, R. B. et al.Inhibition of the sodium/potassium ATPase impairs N-glycan expression and function. Cancer Res.68, 6688–6697 (2008). CAS Google Scholar