Discoveries, drugs and skeletal disorders (original) (raw)
Cummings, S. R. & Melton, L. J. Epidemiology and outcomes of osteoporotic fractures. Lancet359, 1761–1767 (2002). ArticlePubMed Google Scholar
Doherty, D. A., Sanders, K. M., Kotowicz, M. A. & Prince, R. L. Lifetime and five-year age-specific risks of first and subsequent osteoporotic fractures in postmenopausal women. Osteoporosis Int.12, 16–23 (2001). CAS Google Scholar
Ray, N. F., Chan, J. K., Thamer, M. & Melton, L. J. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J. Bone Miner. Res.12, 24–35 (1997). CASPubMed Google Scholar
Burr, D. B. The contribution of the organic matrix to bone's material properties. Bone31, 8–11 (2002). CASPubMed Google Scholar
Kanis, J. A. Diagnosis of osteoporosis and assessment of fracture risk. Lancet359, 1929–1936 (2002). PubMed Google Scholar
Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage10, 432–463 (2002). CASPubMed Google Scholar
Klareskog, L., Lorentzen, J., Padyukov, L. & Alfredsson, L. Genes and environment in arthritis: can RA be prevented? Arthritis Res.4 (Suppl. 3), S31–S36 (2002). PubMedPubMed Central Google Scholar
Goltzman, D., Karaplis, A. C., Kremer, R. & Rabbani, S. A. Molecular basis of the spectrum of skeletal complications of neoplasia. Cancer88 (Suppl. 12), 2903–2908 (2000). CASPubMed Google Scholar
Gemmell, E., Yamazaki, K. & Seymour, G. J. Destructive periodontitis lesions are determined by the nature of the lymphocytic response. Crit. Rev. Oral Biol. Med.13, 17–34 (2002). CASPubMed Google Scholar
Reddy, S. V., Kurihara, N., Menaa, C. & Roodman, G. D. Paget's disease of bone: a disease of the osteoclast. Rev. Endocr. Metab. Disord.2, 195–201 (2001). CASPubMed Google Scholar
Econs, M. J. New insights into the pathogenesis of inherited phosphate wasting disorders. Bone25, 131–135 (1999). CASPubMed Google Scholar
White, K. E. et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. The ADHR Consortium. Nature Genet.26, 345–348 (2000).The initial description of the discovery of FGF23 in a syndrome of hypophosphataemic rickets. CAS Google Scholar
Mawer, E. B. & Davies, M. Vitamin D nutrition and bone disease in adults. Rev. Endocr. Metab. Disord.2, 175–186 (2001). Google Scholar
Aubin, J. E. Regulation of osteoblast formation and function. Rev. Endocr. Metab. Disord.2, 81–94 (2001). CASPubMed Google Scholar
Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell89, 755–764 (1997). CASPubMed Google Scholar
Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell108, 17–29 (2002). CASPubMed Google Scholar
Sabatakos, G. et al. Overexpression of ΔFOSB transcription factor(s) increases bone formation and inhibits adipogenesis. Nature Med.6, 985–990 (2000). CASPubMed Google Scholar
Jochum, W. et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Med.6, 985–990 (2000). Google Scholar
Rouleau, M. F., Mitchell, J. & Goltzman, D. In vivo distribution of parathyroid hormone receptor in bone: evidence that a predominant osseous target cell is not the mature osteoblast. Endocrinology123, 187–191 (1988). CASPubMed Google Scholar
Suda, T., Kobayashi, K., Jimi, E., Udagawa, N. & Takahashi, N. The molecular basis of osteoclast differentiation and activation. Novartis Found. Symp.232, 235–247 (2001). CASPubMed Google Scholar
Watanuki, M. et al. Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J. Bone Miner. Res.17, 1015–1025 (2002). CASPubMed Google Scholar
Miao, D., He, B., Karaplis, A. C. & Goltzman, D. Parathyroid hormone is essential for normal fetal bone formation. J. Clin. Invest.109, 1173–1182 (2002).The first report of the physiological role of PTH as an anabolic agent in fetal bone. CASPubMedPubMed Central Google Scholar
Amizuka, N. et al. Haploinsufficiency of parathyroid hormone-related peptide (PTHrP) results in abnormal postnatal bone development. Dev. Biol.175, 166–176 (1996). CASPubMed Google Scholar
Miao, D. et al. Parathyroid hormone-related peptide stimulates osteogenic cell proliferation through protein kinase C activation of the Ras/mitogen-activated protein kinase signaling pathway. J. Biol. Chem.276, 32204–32213 (2001). CASPubMed Google Scholar
Carpio, L., Gladu, J., Goltzman, D. & Rabbani, S. A. Induction of osteoblast differentiation indexes by PTHrP in MG-63 cells involves multiple signaling pathways. Am. J. Physiol. Endocrinol. Metab.281, E489–E499 (2001). CASPubMed Google Scholar
Jilka, R. L. et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Invest.104, 439–446 (1999).A description of the inhibition of apoptosis as an important mechanism for the anabolic effect of PTH. CASPubMedPubMed Central Google Scholar
Rodan, G. A. & Martin, T. J. Therapeutic approaches to bone diseases. Science289, 1508–1514 (2000). CASPubMed Google Scholar
Dempster, D. W. et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J. Bone Miner. Res.16, 1846–1853 (2001). CASPubMed Google Scholar
Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell107, 513–523 (2001).A ground-breaking report of the involvement of LRP5 in bone formation. CASPubMed Google Scholar
Little, C. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet.70, 11–19 (2002). CASPubMed Google Scholar
Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med.346, 1513–1521 (2002). CASPubMed Google Scholar
Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol.157, 303–314 (2002). CASPubMedPubMed Central Google Scholar
Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signaling. Nature417, 664–667 (2002). CASPubMed Google Scholar
Hunter, I., McGregor, D. & Robins, S. P. Caspase-dependent cleavage of cadherins and catenins during osteoblast apoptosis. J. Bone Miner. Res.16, 466–477 (2001). CASPubMed Google Scholar
Marie, P. J. Role of N-cadherin in bone formation. J. Cell. Physiol.190, 297–305 (2002). CASPubMed Google Scholar
Lecanda, F. et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J. Cell Biol.151, 931–944 (2000). CASPubMedPubMed Central Google Scholar
Tanaka, Y. et al. H-Ras/mitogen-activated protein kinase pathway inhibits integrin-mediated adhesion and induces apoptosis in osteoblasts. J. Biol. Chem.277, 21446–21452 (2002). CASPubMed Google Scholar
Bianco, P., Riminucci, M., Gronthos, S. & Robey, P. G. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells19, 180–192 (2001). CASPubMed Google Scholar
Nuttall, M. E. & Gimble, J. M. Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone27, 177–184 (2000). CASPubMed Google Scholar
Capdevila, J. & Belmonte, J. C. Patterning mechanisms controlling vertebrate limb development. Annu. Rev. Cell Dev. Biol.17, 87–132 (2001). CASPubMed Google Scholar
Garrett, I. R. & Mundy, G. R. The role of statins as potential targets for bone formation. Arthritis Res.4, 237–240 (2002). PubMedPubMed Central Google Scholar
Teitelbaum, S. L. Bone resorption by osteoclasts. Science289, 1504–1508 (2000).An excellent review of the molecular regulation of osteoclast function. CASPubMed Google Scholar
Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the _c_-Src proto-oncogene leads to osteopetrosis in mice. Cell64, 693–702 (1991). CASPubMed Google Scholar
Sanjay, A., et al. Cbl associates with Pyk2 and Src to regulate Src kinase activity, αvβ3 integrin-mediated signaling, cell adhesion, and osteoclast motility. J. Cell Biol.152, 181–196 (2001). CASPubMedPubMed Central Google Scholar
Hu, P. Y. et al. A splice junction mutation in intron 2 of the carbonic anhydrase II gene of osteopetrosis patients from Arabic countries. Hum. Mutat.1, 288–292 (1992). CASPubMed Google Scholar
Teti, A. et al. Cytoplasmic pH regulation and chloride/bicarbonate exchange in avian osteoclasts. J. Clin. Invest.83, 227–233 (1989). CASPubMedPubMed Central Google Scholar
Blair, H. C., Teitelbaum, S. L., Ghiselli, R. & Gluck, S. Ostoeclastic bone resorption by a polarized vacuolar proton pump. Science245, 855–857 (1989). CASPubMed Google Scholar
Stroup, G. B. et al. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J. Bone Miner. Res.16, 1747–1749 (2001). Google Scholar
Tondravi, M. M. et al. Osteopetrosis in mice lacking hematopoietic transcription factor PU.1. Nature386, 81–84 (1997). CASPubMed Google Scholar
Grigoriadis, A. E. et al. _c_-Fos: a key regulator of osteoclast–macrophage lineage determination and bone remodeling. Science266, 443–448 (1994). CASPubMed Google Scholar
Iotsova, V. et al. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nature Med.3, 1285–1289 (1997). CASPubMed Google Scholar
Hodgkinson, C. A. et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic helix–loop–helix zipper protein. Cell74, 395–404 (1993). CASPubMed Google Scholar
Theill, L. E., Boyle, W. J. & Penninger, J. M. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol.20, 795–823 (2002). CASPubMed Google Scholar
Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell89, 309–319 (1997).An initial description of the role of OPG in the regulation of bone density. CASPubMed Google Scholar
Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature408, 600–605 (2000). CASPubMed Google Scholar
Delmas, P. D. Treatment of postmenopausal osteoporosis. Lancet359, 2018–2026 (2002).An excellent review of the current therapy for postmenopausal osteoporosis. CASPubMed Google Scholar
Russell, R. G. et al. The pharmacology of bisphosphonates and new insights into their mechanisms of action. J. Bone Miner. Res.14 (Suppl. 2), 53–65 (1999). CASPubMed Google Scholar
Lehenkari, P. P. et al. Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol. Pharmacol.61, 1255–1262 (2002). CASPubMed Google Scholar
Lindsay, R, Hart, D. M. & Fogelman, I. Bone mass after withdrawal of oestrogen replacement. Lancet1, 729 (1981).
Manolagas, S. C., Kousteni, S. & Jilka, R. L. Sex steroids and bone. Recent Prog. Horm. Res.57, 385–409 (2002). CASPubMed Google Scholar
Riggs, B. L., Khosla, S. & Melton, L. J. Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev.23, 279–302 (2002).References61and62are both comprehensive reviews of the effect of sex steroids on bone. CASPubMed Google Scholar
Lufkin, E. G., Wong, M. & Deal, C. The role of selective estrogen receptor modulators in the prevention and treatment of osteoporosis. Rheum. Dis. Clin. North Am.27, 163–185 (2001). CASPubMed Google Scholar
Martin, T. J. Calcitonin, an update. Bone24 (Suppl. 5), 63S–65S (1999). CASPubMed Google Scholar
Nguyen, T. V. & Eisman, J. A. Genetics of fracture: challenges and opportunities. J. Bone Miner. Res.15, 1243–1252 (2000). Google Scholar
Karsenty, G. & Wagner, E. F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell.2, 389–406 (2002). CASPubMed Google Scholar
Kim, H. J., Rice, D. P., Kettunen, P. J. & Thesleff, I. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development125, 1241–1251 (1998). CASPubMed Google Scholar
Suda, N. et al. Parathyroid hormone-related protein is required for normal intramembranous bone development. J. Bone Miner. Res.16, 2182–2191 (2001). CASPubMed Google Scholar
Zhang, X. et al. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J. Clin. Invest.109, 1405–1415 (2002). CASPubMedPubMed Central Google Scholar
Bi, W. et al. Sox9 is required for cartilage formation. Nature Genet.22, 85–89 (1999). CASPubMed Google Scholar
Smits, P. et al. The transcription factors l-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell1, 277–290 (2001). CASPubMed Google Scholar
Panda, D. K. et al. The transcription factor SOX9 regulates cell cycle and differentiation genes in chondrocytic CFK2 cells. J. Biol. Chem.276, 41229–41236 (2001). CASPubMed Google Scholar
Amizuka, N., Warshawsky, H., Henderson, J. E., Goltzman, D. & Karaplis, A. C. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J. Cell Biol.126, 1611–1623 (1994).A demonstration of the crucial role of PTHrP in endochondral bone formation. CASPubMed Google Scholar
Chung, U. I., Schipani, E., McMahon, A. P. & Kronenberg, H. M. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J. Clin. Invest.107, 295–304 (2001). CASPubMedPubMed Central Google Scholar
Ornitz, D. M. & Marie, P. J. FGF signaling pathways in endochondral and intramembraneous bone development and human genetic disease. Genes Dev.16, 1446–1465 (2002). CASPubMed Google Scholar
Zelzer, E. et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development129, 1893–1904 (2002). CASPubMed Google Scholar
St-Jacques, B., Hammerschmidt, M. & McMahon, A. P. Indian hedgehog signalling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev.13, 2072–2086 (1999). CASPubMedPubMed Central Google Scholar
Takeda, S. & Karsenty, G. Central control of bone formation. J. Bone Miner. Metab.19, 195–198 (2001). CASPubMed Google Scholar
Panda, D. K. et al. Targeted ablation of the 25-hydroxyvitamin D1 α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc. Natl Acad. Sci. USA98, 7498–7503 (2001). CASPubMedPubMed Central Google Scholar
Amling, M. et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology140, 4982–4987 (1999). CASPubMed Google Scholar
Mosekilde, L. Mechanisms of age-related bone loss. Novartis Found. Symp.235, 150–166 (2001). CASPubMed Google Scholar
Norman, T. L. & Wang, Z. Microdamage of human cortical bone: incidence and morphology in long bones. Bone20, 375–379 (1997). CASPubMed Google Scholar
Gazit, D., Zilberman, Y., Ebner, R. & Kahn, A. Bone loss (osteopenia) in old male mice results from diminished activity and availability of TGF-β. J. Cell. Biochem.70, 478–488 (1998). CASPubMed Google Scholar
Aerssens, J., Boonen, S., Joly, J. & Dequeker, J. Variations in trabecular bone composition with anatomical site and age: potential implications for bone quality assessment. J. Endocrinol.155, 411–421 (1997). CASPubMed Google Scholar
Seeman, E. Pathogenesis of bone fragility in women and men. Lancet359, 1841–1850 (2002). PubMed Google Scholar
Delmas, P. D. et al. The use of placebo-controlled and non-inferiority trials for the evaluation of new drugs in the treatment of postmenopausal osteoporosis. Osteoporosis Int.13, 1–5 (2002).A description of the ethical dilemma in the use of placebo controls for treatment of osteoporosis. CAS Google Scholar
The Writing Group for the PEPI. Effects of hormone therapy on bone mineral density: results from the postmenopausal estrogen/progestin interventions (PEPI) trial. JAMA276, 1389–1396 (1996).
Writing Group for the Women's Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA288, 321–333 (2002).A landmark report on the effects of combinations of oestrogen and progesterone on bone and on other organs in postmenopausal women.
Ettinger, B. et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA282, 637–645 (1999). CASPubMed Google Scholar
Barrett-Connor, E. et al. Raloxifene and cardiovascular events in osteoporotic postmenopausal women: four-year results from the MORE (Multiple Outcomes of Raloxifene Evaluation) randomized trial. JAMA287, 847–857 (2002). CASPubMed Google Scholar
Watts, N. B. Treatment of osteoporosis with bisphosphonates. Rheum. Dis. Clin. North. Am.27, 197–214 (2001). CASPubMed Google Scholar
Hosking, D. et al. Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. N. Engl. J. Med.338, 485–492 (1998). CASPubMed Google Scholar
Mortensen, L. et al. Risedronate increases bone mass in an early postmenopausal population: two years of treatment plus one year of follow-up. J. Clin. Endocrinol. Metab.83, 396–402 (1998). CASPubMed Google Scholar
Schnitzer, T. et al. Therapeutic equivalence of alendronate 70 mg once-weekly and alendronate 10 mg daily in the treatment of osteoporosis. Aging (Milano)12, 1–12 (2000). CAS Google Scholar
Cummings, S. R. et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA280, 2077–2082 (1998). CASPubMed Google Scholar
Harris, S. T. et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. JAMA282, 1344–1352 (1999). CASPubMed Google Scholar
Black, D. M. et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet348, 1535–1541 (1996). CASPubMed Google Scholar
McClung, M. R. et al. Effect of risedronate on the risk of hip fracture in elderly women. N. Engl. J. Med.344, 333–340 (2001). CASPubMed Google Scholar
Ringe, J. D., Orwall, E., Daifotis, A. & Lombardi, A. Treatment of male osteoporosis: recent advances with alendronate. Osteoporosis Int.13, 195–199 (2002). CAS Google Scholar
Saag, K. G. et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N. Engl. J. Med.339, 292–299 (1998). CASPubMed Google Scholar
Reid, I. R. et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N. Engl. J. Med.346, 653–661 (2002). CASPubMed Google Scholar
Siris, E. S. Goals of treatment for Paget's disease of bone. J. Bone Miner. Res.14 (Suppl. 2), 49–52 (1999). PubMed Google Scholar
Coleman, R. E. Optimising treatment of bone metastases by Aredia and Zometa. Breast Cancer7, 361–369 (2000). CASPubMed Google Scholar
Glorieux, F. H. et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N. Engl. J. Med.339, 947–952 (1998). CASPubMed Google Scholar
Lehmann, H. J., Mouritzen, U., Christgau, S., Cloos, P. A. & Christiansen, C. Effect of bisphosphonates on cartilage turnover assessed with a newly developed assay for collagen type II degradation products. Ann. Rheum. Dis.61, 530–533 (2002). CASPubMedPubMed Central Google Scholar
Chesnut, C. H. et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am. J. Med.109, 267–276 (2000). CASPubMed Google Scholar
Selye, H. On stimulation of new bone-formation with parathyroid extract and irradiated ergosterol. Endocrinology16, 547–558 (1932). CAS Google Scholar
Reeve, J. et al. The anabolic effect of low doses of human parathyroid hormone fragment on the skeleton in postmenopausal osteoporosis. Lancet1, 1035–1038 (1976). CASPubMed Google Scholar
Tam, C. S., Heersche, J. N., Murray, T. M. & Parsons, J. A. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology110, 506–512 (1982). CASPubMed Google Scholar
Dobnig, H. & Turner, R. T. The effects of programmed administration of human parathyroid hormone fragment (1–34) on bone histomorphometry and serum chemistry in rats. Endocrinology138, 4607–4612 (1997). CASPubMed Google Scholar
Neer, R. M. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med.344, 1434–1441 (2001).The first report of the beneficial effect of PTH treatment on fractures in postmenopausal osteoporosis. CASPubMed Google Scholar
Brown, A. J. Therapeutic uses of vitamin D analogues. Am. J. Kidney Dis.38 (Suppl. 5), S3–S19 (2001). CASPubMed Google Scholar
Dawson-Hughes, B., Harris, S. S., Krall, E. A. & Dallal, G. E. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N. Engl. J. Med.337, 670–676 (1997). CASPubMed Google Scholar
Chapuy, M. C. et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N. Engl. J. Med.327, 1637–1642 (1992). CASPubMed Google Scholar
Negro-Vilar, A. Selective androgen receptor modulators (SARMs): a novel approach to androgen therapy for the new millennium. J. Clin. Endocrinol. Metab.84, 3459–3462 (1999). CASPubMed Google Scholar
Lieberman, J. R., Daluiski, A. & Einhorn, T. A. The role of growth factors in the repair of bone. Biology and clinical applications. J. Bone Joint Surg. Am.84, A1032–A1044 (2002). Google Scholar
Nemeth, E. F. et al. Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J. Pharmacol. Exp. Ther.299, 323–331 (2001). CASPubMed Google Scholar
Meunier, P. J. et al. Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis — a 2-year randomized placebo controlled trial. J. Clin. Endocrinol. Metab.87, 2060–2066 (2002). CASPubMed Google Scholar
Reginster, J. Y. Strontium ranelate in osteoporosis. Curr. Pharm. Des.8, 19079–1916 (2002). Google Scholar