The use and analysis of microarray data (original) (raw)

References

  1. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).
    Article CAS Google Scholar
  2. Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).
    Article CAS Google Scholar
  3. Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science 270, 484–487 (1995).
    Article CAS Google Scholar
  4. Wu, T. D. Analysing gene expression data from DNA microarrays to identify candidate genes. J. Pathol. 195, 53–65 (2001).
    Article CAS Google Scholar
  5. Eickhoff, B., Korn, B., Schick, M., Poustka, A. & van der Bosch, J. Normalization of array hybridization experiments in differential gene expression analysis. Nucleic Acids Res. 27, 33 (1999).
    Article Google Scholar
  6. Zien, A., Aigner, T., Zimmer, R. & Lengauer, T. Centralization: a new method for the normalization of gene expression data. Bioinformatics 17 (Suppl. 1), S323–S331 (2001).
    Article Google Scholar
  7. Li, C. & Hung Wong W., Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2, research0032–0032 (2001). This article describes normalization techniques, as well as a popular alternative quantification method for Affymetrix microarrays.
    Google Scholar
  8. Ramdas, L. et al. Sources of nonlinearity in cDNA microarray expression measurements. Genome Biol. 2, research0047– 0047 (2001).
    Article Google Scholar
  9. Tseng, G. C., Oh, M. K., Rohlin, L., Liao, J. C. & Wong, W. H. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res. 29, 2549–2557 (2001).
    Article CAS Google Scholar
  10. Livesey, F. J., Furukawa, T., Steffen, M. A., Church, G. M. & Cepko, C. L. Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Curr. Biol. 10, 301–310 (2000).
    Article CAS Google Scholar
  11. Jelinsky, S. A. & Samson, L. D. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc. Natl Acad. Sci. USA 96, 1486–1491 (1999).
    Article CAS Google Scholar
  12. Chen, J. J. et al. Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 51, 313–324 (1998).
    Article CAS Google Scholar
  13. Ishii, M. et al. Direct comparison of GeneChip and SAGE on the quantitative accuracy in transcript profiling analysis. Genomics 68, 136–143 (2000).
    Article CAS Google Scholar
  14. Vernon, S. D. et al. Reproducibility of alternative probe synthesis approaches for gene expression profiling with arrays. J. Mol. Diagn. 2, 124–127 (2000).
    Article CAS Google Scholar
  15. Baugh, L. R., Hill, A. A., Brown, E. L. & Hunter, C. P. Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res. 29, E29 (2001).
    Article CAS Google Scholar
  16. Schadt, E. E., Li, C., Su, C. & Wong, W. H. Analyzing high-density oligonucleotide gene expression array data. J. Cell. Biochem. 80, 192–202 (2000).
    Article CAS Google Scholar
  17. Yang, Y. H., Buckley, M. J., Dudoit, S. & Speed, T. P. Comparison of Methods for Image Analysis on cDNA Microarray Data (Univ. California, Berkeley, 2000).
    Google Scholar
  18. Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).
    Article CAS Google Scholar
  19. Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227–235 (2000). Using dendrograms, Ross and colleagues found clusters of genes measured across the various cancer cell lines in the NCI-60 panel.
    Article CAS Google Scholar
  20. Butte, A. J., Tamayo, P., Slonim, D., Golub, T. R. & Kohane, I. S. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl Acad. Sci. USA 97, 12182–12186 (2000).
    Article CAS Google Scholar
  21. Kuo, W. P., Jenssen, T. K., Butte, A. J., Ohno-Machado, L. & Kohane, I. S. Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 18, 405–412 (2002). One of the first studies to compare published measurements of, in theory, the same cancer cell lines on cDNA and oligonucleotide microarrays. Shows that these measurements are not directly comparable.
    Article CAS Google Scholar
  22. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).
    Article CAS Google Scholar
  23. Butte, A. J. et al. Determining significant fold differences in gene expression analysis. Pac. Symp. Biocomput. 6–17 (2001).
  24. Park, P. J., Pagano, M. & Bonetti, M. A nonparametric scoring algorithm for identifying informative genes from microarray data. Pac. Symp. Biocomput. 52–63 (2001).
  25. Pavlidis, P. & Noble, W. S. Analysis of strain and regional variation in gene expression in mouse brain. Genome Biol. 2, research0042.10–0042.15 (2001).
    Article Google Scholar
  26. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999). One of the first publications to show how microarrays can assist in difficult clinical diagnosis; in this case, determining acute lymphocytic leukaemia from acute myelogenous leukaemia using a nearest-neighbour approach.
    Article CAS Google Scholar
  27. Quinlan, J. C4.5: Programs for Machine Learning (Morgan Kaufmann, San Mateo, California, 1992).
    Google Scholar
  28. Rumelhart, D., McClelland, J. & The Parallel Distributed Processing Research Group. Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT Press, Cambridge, Massachusetts, 1986).
    Google Scholar
  29. Furey, T. S. et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906–914 (2000).
    Article CAS Google Scholar
  30. Brown, M. P. et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl Acad. Sci. USA 97, 262–267 (2000).
    Article CAS Google Scholar
  31. Chow, M. L., Moler, E. J. & Mian, I. S. Identifying marker genes in transcription profiling data using a mixture of feature relevance experts. Physiol. Genomics 5, 99–111 (2001).
    Article CAS Google Scholar
  32. Alter, O., Brown, P. O. & Botstein, D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl Acad. Sci. USA 97, 10101–10106 (2000).
    Article CAS Google Scholar
  33. Raychaudhuri, S., Stuart, J. M. & Altman, R. B. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac. Symp. Biocomput. 455–466 (2000).
  34. Fiehn, O. et al. Metabolite profiling for plant functional genomics. Nature Biotechnol. 18, 1157–1161 (2000).
    Article CAS Google Scholar
  35. Wen, X. et al. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl Acad. Sci. USA 95, 334–339 (1998). One of the first large microarray publications, with 112 genes measured in 9 conditions, analysed using dendograms created using Euclidean distance.
    Article CAS Google Scholar
  36. Hilsenbeck, S. G. et al. Statistical analysis of array expression data as applied to the problem of tamoxifen resistance. J. Natl Cancer Inst. 91, 453–459 (1999).
    Article CAS Google Scholar
  37. Ben-Dor, A. et al. Tissue classification with gene expression profiles. J. Comput. Biol. 7, 559–583 (2000).
    Article CAS Google Scholar
  38. Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA 96, 2907–2912 (1999). Tamayo and colleagues were the first to use self-organizing maps to show clusters of genes measured across time from differentiating hematopoetic cells.
    Article CAS Google Scholar
  39. Toronen, P., Kolehmainen, M., Wong, G. & Castren, E. Analysis of gene expression data using self-organizing maps. FEBS Lett. 451, 142–146 (1999).
    Article CAS Google Scholar
  40. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998). The first group to show the now-standard Eisen-style dendrogram.
    Article CAS Google Scholar
  41. Liang, S., Fuhrman, S. & Somogyi, R. Reveala general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp. Biocomput. 18–29 (1998).
  42. Wuensche, A. Genomic regulation modeled as a network with basins of attraction. Pac. Symp. Biocomput. 89–102 (1998).
  43. Szallasi, Z. & Liang, S. Modeling the normal and neoplastic cell cycle with 'realistic Boolean genetic networks': their application for understanding carcinogenesis and assessing therapeutic strategies. Pac. Symp. Biocomput. 66–76 (1998).
  44. Friedman, N., Linial, M., Nachman, I. & Pe'er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000).
    Article CAS Google Scholar
  45. Butte, A. & Kohane, I. in Fall Symposium, American Medical Informatics Association (ed. Lorenzi, N.) 711–715 (Hanley and Belfus, Washington DC, 1999).
    Google Scholar
  46. Butte, A. J. & Kohane, I. S. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 418–429 (2000).
  47. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998). The first publication to merge several microarray experiments, to show clusters using dendrograms constructed using correlation coefficients, and to analyse the time-series pattern of genes using Fourier analysis.
    Article CAS Google Scholar
  48. Yeung, K. Y. & Ruzzo, W. L. An Empirical Study of Principal-Components Analysis for Clustering Gene Expression Data Technical Report UW-CSE-2000-11-03. (Univ. Washington, Washington DC, 2000).
  49. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000). Alizadeh and colleagues were the first to use microarrays to find subtypes of a single disease that could be defined only by their gene-expression patterns, and which showed significant differences in patient mortality.
    Article CAS Google Scholar
  50. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet. 25, 25–29 (2000).
    Article CAS Google Scholar
  51. Kohane, I. S., Kho, A. T. & Butte, A. J. Microarrays for an Integrative Genomics (MIT Press, Cambridge, Massachusetts, 2002).
    Book Google Scholar
  52. Perou, C. M. Show me the data! Nature Genet. 29, 373 (2001).
    Article CAS Google Scholar

Download references