Mitochondrial allostatic load puts the 'gluc' back in glucocorticoids (original) (raw)
Emerging Risk Factors Collaboration et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med.364, 829–841 (2011).
Olshansky, S. J. et al. A potential decline in life expectancy in the United States in the 21st century. N. Engl. J. Med352, 1138–1145 (2005). CASPubMed Google Scholar
van Elderen, S. G. et al. Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up. Neurology75, 997–1002 (2010). CASPubMed Google Scholar
Mattson, M. P. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab.16, 706–722 (2012). CASPubMedPubMed Central Google Scholar
Dallman, M. F. et al. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front Neuroendocrinol.14, 303–347 (1993). CASPubMed Google Scholar
Dickerson, S. S. & Kemeny, M. E. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol. Bull.130, 355–391 (2004). PubMed Google Scholar
Testa, R. et al. Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet. Med.28, 1388–1394 (2011). CASPubMed Google Scholar
Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA101, 17312–17315 (2004). CASPubMedPubMed Central Google Scholar
Shalev, I. et al. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology38, 1835–1842 (2013). CASPubMedPubMed Central Google Scholar
Picard, M. Pathways to aging: the mitochondrion at the intersection of biological and psychosocial sciences. J. Aging Res.2011, 814096 (2011). PubMedPubMed Central Google Scholar
McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev.87, 873–904 (2007). PubMed Google Scholar
McEwen, B. S. Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin. Neurosci.8, 367–381 (2006). PubMedPubMed Central Google Scholar
Cohen, S., Janicki-Deverts, D. & Miller, G. E. Psychological stress and disease. JAMA298, 1685–1687 (2007). CASPubMed Google Scholar
McEwen, B. S. Brain on stress: how the social environment gets under the skin. Proc. Natl Acad. Sci. USA109 (Suppl. 2), 17180–17185 (2012). CASPubMedPubMed Central Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci.10, 434–445 (2009). CASPubMed Google Scholar
Steptoe, A. & Kivimäki, M. Stress and cardiovascular disease: an update on current knowledge. Annu. Rev. Public Health34, 337–354 (2013). PubMed Google Scholar
Sinha, R. & Jastreboff, A. M. Stress as a common risk factor for obesity and addiction. Biol. Psychiatry73, 827–835 (2013). CASPubMedPubMed Central Google Scholar
Puterman, E. & Epel, E. An intricate dance: life experience, multisystem resiliency, and rate of telomere decline throughout the lifespan. Soc. Personal Psychol. Compass.6, 807–825 (2012). PubMedPubMed Central Google Scholar
Shalev, I. et al. Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol. Psychiatry18, 576–581 (2013). CASPubMed Google Scholar
Steptoe, A. et al. Educational attainment but not measures of current socioeconomic circumstances are associated with leukocyte telomere length in healthy older men and women. Brain Behav. Immun.25, 1292–1298 (2011). PubMed Google Scholar
Tomiyama, A. J. et al. Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiol. Behav.106, 40–45 (2012). CASPubMed Google Scholar
Puterman, E. et al. The power of exercise: buffering the effect of chronic stress on telomere length. PLoS ONE5, e10837 (2010). PubMedPubMed Central Google Scholar
Sterling, P. & Eyer, J. in Handbook of Life Stress, Cognition and Health (eds. Fisher, S. & Reason, J.) 629–649 (John Wiley & Sons, New York, 1988). Google Scholar
Stumvoll, M., Tataranni, P. A., Stefan, N., Vozarova, B. & Bogardus, C. Glucose allostasis. Diabetes52, 903–909 (2003). CASPubMed Google Scholar
McEwen, B. S. Protective and damaging effects of stress mediators. N. Engl. J. Med.338, 171–179 (1998). CASPubMed Google Scholar
McEwen, B. S. & Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med.153, 2093–2101 (1993). CASPubMed Google Scholar
Juster, R. P. et al. A transdisciplinary perspective of chronic stress in relation to psychopathology throughout lifespan development. Dev. Psychopathol.23, 725–776 (2011). PubMed Google Scholar
Juster, R. P., McEwen, B. S. & Lupien, S. J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev.35, 2–16 (2010). PubMed Google Scholar
Seeman, T. E., McEwen, B. S., Rowe, J. W. & Singer, B. H. Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc. Natl Acad. Sci. USA98, 4770–4775 (2001). CASPubMedPubMed Central Google Scholar
Andrews, R. C. & Walker, B. R. Glucocorticoids and insulin resistance: old hormones, new targets. Clin. Sci. (Lond.)96, 513–523 (1999). CAS Google Scholar
Dinneen, S., Alzaid, A., Miles, J. & Rizza, R. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J. Clin. Invest.92, 2283–2290 (1993). CASPubMedPubMed Central Google Scholar
Yuen, K. C., McDaniel, P. A. & Riddle, M. C. Twenty-four-hour profiles of plasma glucose, insulin, C-peptide and free fatty acid in subjects with varying degrees of glucose tolerance following short-term, medium-dose prednisone (20 mg/day) treatment: evidence for differing effects on insulin secretion and action. Clin. Endocrinol. (Oxf.)77, 224–232 (2012). CAS Google Scholar
Phillips, D. I. et al. Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J. Clin. Endocrinol. Metab.83, 757–760 (1998). CASPubMed Google Scholar
Karatsoreos, I. N. et al. Endocrine and physiological changes in response to chronic corticosterone: a potential model of the metabolic syndrome in mouse. Endocrinology151, 2117–2127 (2010). CASPubMedPubMed Central Google Scholar
Chavez, M. et al. Adrenalectomy increases sensitivity to central insulin. Physiol. Behav.62, 631–634 (1997). CASPubMed Google Scholar
Cannon, W. B. Bodily Changes in Pain, Hunger, Fear, and Rage (Appleton-Century-Crofts, New York, 1929). Google Scholar
Faulenbach, M. et al. Effect of psychological stress on glucose control in patients with type 2 diabetes. Diabet. Med.29, 128–131 (2012). CASPubMed Google Scholar
Nowotny, B. et al. Effects of acute psychological stress on glucose metabolism and subclinical inflammation in patients with post-traumatic stress disorder. Horm. Metab. Res.42, 746–753 (2010). CASPubMed Google Scholar
Gonzalez-Bono, E., Rohleder, N., Hellhammer, D. H., Salvador, A. & Kirschbaum, C. Glucose but not protein or fat load amplifies the cortisol response to psychosocial stress. Horm. Behav.41, 328–333 (2002). CASPubMed Google Scholar
Ismail, K., Winkley, K. & Rabe-Hesketh, S. Systematic review and meta-analysis of randomised controlled trials of psychological interventions to improve glycaemic control in patients with type 2 diabetes. Lancet363, 1589–1597 (2004). PubMed Google Scholar
Spiegel, K., Leproult, R. & Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet354, 1435–1439 (1999). ArticleCASPubMed Google Scholar
Karatsoreos, I. N., Bhagat, S., Bloss, E. B., Morrison, J. H. & McEwen, B. S. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc. Natl Acad. Sci. USA108, 1657–1662 (2011). CASPubMedPubMed Central Google Scholar
Scheffler, I. E. Mitochondria, 2nd edn (John Wiley & Sons, 2008). Google Scholar
Ballinger, S. W. Beyond retrograde and anterograde signalling: mitochondrial–nuclear interactions as a means for evolutionary adaptation and contemporary disease susceptibility. Biochem. Soc. Trans.41, 111–117 (2013). CASPubMedPubMed Central Google Scholar
Gómez-Durán, A. et al. Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum. Mol. Genet.19, 3343–3353 (2010). PubMed Google Scholar
Safdar, A. et al. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc. Natl Acad. Sci. USA108, 4135–4140 (2011). CASPubMedPubMed Central Google Scholar
Ross, J. M. et al. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature501, 412–415 (2013). CASPubMedPubMed Central Google Scholar
Hamilton, M. L. et al. Does oxidative damage to DNA increase with age? Proc. Natl Acad. Sci. USA98, 10469–10474 (2001). CASPubMedPubMed Central Google Scholar
Meissner, C., Bruse, P. & Oehmichen, M. Tissue-specific deletion patterns of the mitochondrial genome with advancing age. Exp. Gerontol.41, 518–524 (2006). CASPubMed Google Scholar
Harman, D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc.20, 145–147 (1972). CASPubMed Google Scholar
Manoli, I. et al. Mitochondria as key components of the stress response. Trends Endocrinol. Metab.18, 190–198 (2007). CASPubMed Google Scholar
Taivassalo, T. et al. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain126, 413–423 (2003). PubMed Google Scholar
Jeppesen, T. D., Orngreen, M. C., van Hall, G., Haller, R. G. & Vissing, J. Fat metabolism during exercise in patients with mitochondrial disease. Arch. Neurol.66, 365–370 (2009). PubMed Google Scholar
Morava, E. & Kozicz, T. Mitochondria and the economy of stress (mal)adaptation. Neurosci. Biobehav. Rev.37, 668–680 (2013). CASPubMed Google Scholar
Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol.11, 872–884 (2010). CASPubMed Google Scholar
Picard, M., Shirihai, O. S., Gentil, B. J. & Burelle, Y. Mitochondrial morphology transitions and functions: implications for retrograde signaling? Am. J. Physiol. Regul. Integr. Comp. Physiol.304, R393–R406 (2013). CASPubMedPubMed Central Google Scholar
Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab.17, 491–506 (2013). CASPubMedPubMed Central Google Scholar
Shutt, T. E. & McBride, H. M. Staying cool in difficult times: mitochondrial dynamics, quality control and the stress response. Biochim. Biophys. Acta1833, 417–424 (2012). PubMed Google Scholar
Chen, H. et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell141, 280–289 (2010). CASPubMedPubMed Central Google Scholar
Yu, T., Robotham, J. L. & Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl Acad. Sci. USA103, 2653–2658 (2006). CASPubMedPubMed Central Google Scholar
Picard, M. & Turnbull, D. M. Linking the metabolic state and mitochondrial DNA in chronic disease, health and aging. Diabetes62, 672–678 (2013). CASPubMedPubMed Central Google Scholar
Psarra, A. M. & Sekeris, C. E. Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. Biochim. Biophys. Acta1787, 431–436 (2009). CASPubMed Google Scholar
Psarra, A. M. & Sekeris, C. E. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim. Biophys. Acta1813, 1814–1821 (2011). CASPubMed Google Scholar
Sapolsky, R. M. The physiological relevance of glucocorticoid endangerment of the hippocampus. Ann. NY Acad. Sci.746, 294–304 (1994). CASPubMed Google Scholar
Du, J. et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl Acad. Sci. USA106, 3543–3548 (2009). CASPubMedPubMed Central Google Scholar
Tang, V. M., Young, A. H., Tan, H., Beasley, C. & Wang, J. F. Glucocorticoids increase protein carbonylation and mitochondrial dysfunction. Horm. Metab. Res.45, 709–715 (2013). CASPubMed Google Scholar
Madrigal, J. L. et al. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology24, 420–429 (2001). CASPubMed Google Scholar
Gong, Y., Chai, Y., Ding, J. H., Sun, X. L. & Hu, G. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain. Neurosci. Lett.488, 76–80 (2011). CASPubMed Google Scholar
Rezin, G. T. et al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem. Int.53, 395–400 (2008). CASPubMed Google Scholar
Bennett, M. C., Mlady, G. W., Fleshner, M. & Rose, G. M. Synergy between chronic corticosterone and sodium azide treatments in producing a spatial learning deficit and inhibiting cytochrome oxidase activity. Proc. Natl Acad. Sci. USA93, 1330–1334 (1996). CASPubMedPubMed Central Google Scholar
Hernández-Alvarez, M. I. et al. Glucocorticoid modulation of mitochondrial function in hepatoma cells requires the mitochondrial fission protein Drp1. Antioxid. Redox Signal.19, 366–378 (2013). PubMedPubMed Central Google Scholar
Medikayala, S., Piteo, B., Zhao, X. & Edwards, J. G. Chronically elevated glucose compromises myocardial mitochondrial DNA integrity by alteration of mitochondrial topoisomerase function. Am. J. Physiol. Cell Physiol.300, C338–C348 (2011). CASPubMed Google Scholar
Suzuki, S. et al. Oxidative damage to mitochondrial DNA and its relationship to diabetic complications. Diabetes Res. Clin. Pract.45, 161–168 (1999). CASPubMed Google Scholar
Picard, M. et al. Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am. J. Respir. Crit. Care Med.186, 1140–1149 (2012). CASPubMed Google Scholar
Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L. & Youle, R. J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell15, 5001–5011 (2004). CASPubMedPubMed Central Google Scholar
Gomes, L. C., Di Benedetto, G. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol.13, 589–598 (2011). CASPubMedPubMed Central Google Scholar
Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell120, 483–495 (2005). CASPubMed Google Scholar
Yakes, F. M. & Van Houten, B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl Acad. Sci. USA94, 514–519 (1997). CASPubMedPubMed Central Google Scholar
Kolesar, J. E., Wang, C. Y., Taguchi, Y. V., Chou, S. H. & Kaufman, B. A. Two-dimensional intact mitochondrial DNA agarose electrophoresis reveals the structural complexity of the mammalian mitochondrial genome. Nucleic Acids Res.41, e58 (2013). CASPubMed Google Scholar
Corral-Debrinski, M. et al. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet.2, 324–329 (1992). CASPubMed Google Scholar
Pan, H. Z. et al. The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta Diabetol.47 (Suppl. 1), 71–76 (2010). CASPubMed Google Scholar
Aschbacher, K. et al. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocrinology38, 1698–1708 (2013). CASPubMedPubMed Central Google Scholar
Lin, M. T. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature443, 787–795 (2006). CASPubMed Google Scholar
Passos, J. F., Saretzki, G. & von Zglinicki, T. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res.35, 7505–7513 (2007). CASPubMedPubMed Central Google Scholar
Passos, J. F. et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol.5, e110 (2007). PubMedPubMed Central Google Scholar
Oexle, K. & Zwirner, A. Advanced telomere shortening in respiratory chain disorders. Hum. Mol. Genet.6, 905–908 (1997). CASPubMed Google Scholar
Malik, A. N. & Czajka, A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion13, 481–492 (2013). CASPubMed Google Scholar
Rasola, A. & Bernardi, P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis12, 815–833 (2007). CASPubMed Google Scholar
Owusu-Ansah, E., Yavari, A., Mandal, S. & Banerjee, U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat. Genet.40, 356–361 (2008). CASPubMed Google Scholar
Qian, W. et al. Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J. Cell Sci.125, 5745–5757 (2012). CASPubMedPubMed Central Google Scholar
Escames, G. et al. Mitochondrial DNA and inflammatory diseases. Hum. Genet.131, 161–173 (2012). CASPubMed Google Scholar
Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity36, 401–414 (2012). CASPubMedPubMed Central Google Scholar
Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature464, 104–107 (2010). CASPubMedPubMed Central Google Scholar
Collins, L. V., Hajizadeh, S., Holme, E., Jonsson, I. M. & Tarkowski, A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J. Leukoc. Biol.75, 995–1000 (2004). CASPubMed Google Scholar
Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature485, 251–255 (2012). CASPubMedPubMed Central Google Scholar
Mathew, A. et al. Degraded mitochondrial DNA is a newly identified subtype of the damage associated molecular pattern (DAMP) family and possible trigger of neurodegeneration. J. Alzheimers Dis.30, 617–627 (2012). CASPubMed Google Scholar
Komili, S. & Silver, P. A. Coupling and coordination in gene expression processes: a systems biology view. Nat. Rev. Genet.9, 38–48 (2008). CASPubMed Google Scholar
Hunter, R. G. et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc. Natl Acad. Sci. USA109, 17657–17762 (2012). CASPubMedPubMed Central Google Scholar
Nasca, C. et al. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc. Natl Acad. Sci. USA110, 4804–4809 (2013). CASPubMedPubMed Central Google Scholar
Guha, M., Pan, H., Fang, J. K. & Avadhani, N. G. Heterogeneous nuclear ribonucleoprotein A2 is a common transcriptional coactivator in the nuclear transcription response to mitochondrial respiratory stress. Mol. Biol. Cell20, 4107–4119 (2009). CASPubMedPubMed Central Google Scholar
Romanello, V. et al. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J.29, 1774–1785 (2010). CASPubMedPubMed Central Google Scholar
Holley, A. K. & St Clair, D. K. Watching the watcher: regulation of p53 by mitochondria. Future Oncol.5, 117–130 (2009). CASPubMed Google Scholar
Schroeder, E. A., Raimundo, N. & Shadel, G. S. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab.17, 954–964 (2013). CASPubMedPubMed Central Google Scholar
Wallace, D. C. Bioenergetics and the epigenome: interface between the environment and genes in common diseases. Dev. Disabil. Res. Rev.16, 114–119 (2010). PubMed Google Scholar
Elstner, M. & Turnbull, D. M. Transcriptome analysis in mitochondrial disorders. Brain Res. Bull.88, 285–293 (2012). CASPubMed Google Scholar
Miller, G. E. et al. A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-κB signaling. Biol. Psychiatry64, 266–272 (2008). CASPubMedPubMed Central Google Scholar
Slavich, G. M. & Cole, S. W. The emerging field of human social genomics. Clin. Psychol. Sci.1, 331–348 (2013). PubMedPubMed Central Google Scholar
Kuo, L. E. et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med.13, 803–811 (2007). CASPubMed Google Scholar
Epel, E. S. Psychological and metabolic stress: a recipe for accelerated cellular aging? Hormones (Athens)8, 7–22 (2009). Google Scholar
Andreux, P. A., Houtkooper, R. H. & Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov.12, 465–483 (2013). CASPubMedPubMed Central Google Scholar
Picard, M. et al. Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. J. Appl. Physiol.115, 1562–1571 (2013). CASPubMedPubMed Central Google Scholar
Colberg, S. R. et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care33, 2692–2696 (2011). Google Scholar
Erickson, K. I. et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl Acad. Sci. USA108, 3017–3022 (2011). CASPubMedPubMed Central Google Scholar
McManus, M. J., Murphy, M. P. & Franklin, J. L. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J. Neurosci.31, 15703–15715 (2011). CASPubMedPubMed Central Google Scholar
McEwen, B. S. & Wingfield, J. C. The concept of allostasis in biology and biomedicine. Horm. Behav.43, 2–15 (2003). PubMed Google Scholar