Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell89, 331–340 (1997). ArticleCASPubMed Google Scholar
Hunninghake, D. B. HMG-CoA reductase inhibitors. Curr. Opin. Lipidol.3, 22–28 (1992). ArticleCAS Google Scholar
Slater, E. E. & MacDonald, J. S. Mechanism of action and biological profile of HMG CoA reductase inhibitors. A new therapeutic alternative. Drugs36 (Suppl. 3), 72–82 (1988). ArticleCASPubMed Google Scholar
[No authors listed] Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet344, 1383–1389 (1994).
Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment; prospective meta-analysis of data from 90,056 participants in 14 randomized trials of statins. Lancet366, 1276–1278 (2005). Google Scholar
Cholesterol Treatment Trialists' (CTT) Collaborators. Efficacy of cholesterol lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet371, 117–125 (2008).
Cholesterol Treatment Trialists' (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomized trials. Lancet376, 1670–1681 (2010).
Cholesterol Treatment Trialists' (CTT) Collaboration. The effects of lowering LDL-cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomized trials. Lancet380, 581–590 (2012).
Taylor, F. et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD004816. http://dx.doi.org/10.1002/14651858.CD004816.pub5.
Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med.359, 2195–2207 (2008). ArticleCASPubMed Google Scholar
FDA. FDA drug safety communication: important safety label changes to cholesterol-lowering statin drugs. FDA[online], (2012).
Freeman, D. J. et al. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation103, 357–362 (2001). ArticleCASPubMed Google Scholar
Coleman, C. I., Reinhart, K., Kluger, J. & White, C.M. The effect of statins on the development of new-onset type 2 diabetes: a meta-analysis of randomized controlled trials. Curr. Med. Res. Opin.24, 1359–1362 (2008). ArticlePubMed Google Scholar
Sattar, N. et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet375, 735–742 (2010). ArticleCASPubMed Google Scholar
Shepherd, J. et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomized controlled trial. Lancet360, 1623–1630 (2002). ArticleCASPubMed Google Scholar
Preiss, D. et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA305, 2556–2564 (2011). ArticleCASPubMed Google Scholar
Waters, D. D. et al. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. J. Am. Coll. Cardiol.61, 148–152 (2013). ArticleCASPubMed Google Scholar
Dormuth, C. R. et al. Higher potency statins and the risk of new diabetes: multicentre, observational study of administrative databases. BMJ348, g3244 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Mora, S. et al. Statins for the primary prevention of cardiovascular events in women with elevated high-sensitivity C-reactive protein or dyslipidemia: results from the Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) and meta-analysis of women from primary prevention trials. Circulation121, 1069–1077 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Chan, D. C. & Watts, G. F. Dyslipidemia in the metabolic syndrome and type 2 diabetes: pathogenesis, priorities, pharmacotherapies. Expert Opin. Pharmacother.12, 13–30 (2011). ArticleCASPubMed Google Scholar
Culver, A. L. et al. Statin use and risk of diabetes mellitus in postmenopausal women in the Women's Health Initiative. Arch. Intern. Med.172, 144–152 (2012). ArticlePubMed Google Scholar
Ruscica, M., Macchi, C., Morlotti, B., Sirtori, C.R. & Magni, P. Statin therapy and related risk of new-onset type 2 diabetes mellitus. Eur. J. Intern. Med.25, 401–406 (2014). ArticleCASPubMed Google Scholar
Sattar, N. A. et al. The use of statins in people at risk of developing diabetes mellitus: evidence and guidance for clinical practice. Atheroscler. Suppl.15, 1–15 (2014). ArticlePubMed Google Scholar
Sekhar, M. S. & Unnikrishnan, M. K. South-Asian population has a higher likelihood for diabetes risk for statins regardless of potency. Med. Hypotheses84, 283–284 (2015). ArticleCAS Google Scholar
Waters, D. D. et al. Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized trials. J. Am. Coll. Cardiol.57, 1535–1545 (2011). ArticleCASPubMed Google Scholar
Ridker, P. M. et al. Cardiovascular benefits and diabetes risk of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet380, 565–571 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Arnaboldi, L. & Corsini, A. Could changes in adiponectin drive the effect of statins on the risk of new-onset diabetes? The case of pitavastatin. Atheroscler. Suppl.16, 1–27 (2015). ArticlePubMed Google Scholar
Chan, D. C., Pang, J. & Watts, G. F. Pathogenesis and management of the diabetogenic effect of statins: a role for adiponectin and coenzyme Q10. Curr. Atheroscler. Rep.17, 472 (2015). ArticleCASPubMed Google Scholar
Sabatine, M. S. et al. High-dose atorvastatin associated with worse glycemic control: a PROVE-IT TIMI 22 sub study [abstract]. Circulation110, S834 (2004). Google Scholar
Sasaki, J., Iwashita, M. & Kono, M. Statins: beneficial or adverse for glucose metabolism. J. Atheroscler. Thromb.13, 123–129 (2006). ArticleCASPubMed Google Scholar
Chapman, M. J. et al. Effect of high-dose pitavastatin on glucose homeostasis in patients at elevated risk of new-onset diabetes: insights from the CAPTAIN and PREVAIL-US studies. Curr. Med. Res. Opin.30, 775–784 (2014). ArticleCASPubMed Google Scholar
Cederberg, H. et al. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort. Diabetologia58, 1109–1117 (2015). ArticleCASPubMed Google Scholar
Yamakawa, T. et al. Influence of pitavastatin on glucose tolerance in patients with type 2 diabetes mellitus. J. Atheroscler. Thromb.15, 269–275 (2008). ArticleCASPubMed Google Scholar
Teramoto, T. et al. New evidence on pitavastatin: efficacy and safety in clinical studies. Expert Opin. Pharmacother.11, 817–828 (2010). ArticleCASPubMed Google Scholar
Odawara, M. et al. Pitavastatin for the delay or prevention of diabetes development in individuals with impaired glucose tolerance. American Diabetes Association[online], (2013). Google Scholar
Cho, Y. et al. Risk of diabetes in patients treated with HMG-CoA reductase inhibitors. Metabolism64, 482–488 (2015). ArticleCASPubMed Google Scholar
Vallejo-Vaz, A. J. et al. Effect of pitavastatin on glucose, HbA1c and incident diabetes: a meta-analysis of randomized controlled clinical trials in individuals without diabetes. Atherosclerosis241, 409–418 (2015). ArticleCASPubMed Google Scholar
Erqou, S., Lee, C. C. & Adler, A. I. Statins and glycemic control in individuals with diabetes: a systematic review and meta-analysis. Diabetologia57, 2444–2452 (2014). ArticleCASPubMed Google Scholar
Ray, K. K. et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomized controlled trials. Lancet373, 1765–1772 (2009). ArticleCASPubMed Google Scholar
Colhoun, H. M. et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicenter randomized placebo-controlled trial. Lancet364, 685–696 (2004). ArticleCASPubMed Google Scholar
Swerdlow, D. I. & Sattar, N. A dysglycaemic effect of statins in diabetes: relevance to clinical practice? Diabetologia57, 2433–2435 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
van de Woestijne, A. P., van der Graaf, Y., Westerink, J., Nathoe, H. M. & Visseren, F. L. Effect of statin therapy on incident type 2 diabetes mellitus in patients with clinically manifest vascular disease. Am. J. Cardiol.115, 441–446 (2015). ArticleCASPubMed Google Scholar
Skoumas, J. et al. Statin therapy and risk of diabetes in patients with heterozygous familial hypercholesterolemia or familial combined hyperlipidemia. Atherosclerosis237, 140–145 (2014). ArticleCASPubMed Google Scholar
Panz, V., Immelman, A., Paiker, J., Pilcher, G. & Raal, F. High-dose statin therapy does not induce insulin resistance in patients with familial hypercholesterolemia. Metab. Syndr. Relat. Disord.10, 351–357 (2012). ArticleCASPubMed Google Scholar
Besseling, J., Kastelein, J. J., Defesche, J. C., Hutton, B. A. & Hovingh, G. K. Association between familial hypercholesterolaemia and prevalence of type 2 diabetes mellitus. JAMA313, 1029–1036 (2015). ArticleCASPubMed Google Scholar
Swerdlow, D. J. et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet385, 351–361 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Kovanen, P. T., Nikkila, E. A. & Miettinen, T. A. Regulation of cholesterol synthesis and storage in fat cells. J. Lipid Res.16, 211–223 (1975). CASPubMed Google Scholar
Krause, B. R. & Hartman, A. D. Adipose tissue and cholesterol metabolism. J. Lipid Res.25, 97–110 (1984). CASPubMed Google Scholar
Van Harmelen, V. et al. Increased adipose angiotensinogen gene expression in human obesity. Obes. Res.8, 337–341 (2000). ArticleCASPubMed Google Scholar
Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumour necrosis factor-α: a direct role in obesity-linked insulin resistance. Science259, 87–91 (1993). ArticleCASPubMed Google Scholar
Fried, S. K., Bunkin, D. A. & Greenberg, S. A. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6, depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab.83, 847–850 (1998). CASPubMed Google Scholar
Le Lay, S. et al. Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes. J. Biol. Chem.276, 16904–16910 (2001). ArticleCASPubMed Google Scholar
Parpal, S., Karlsson, M., Thorn, H. & Strålfors, P. Cholesterol depletion disrupts caveolae and insulin receptor signalling for metabolic control via insulin receptor substrate-1 but not for mitogen-activated protein kinase control. J. Biol. Chem.276, 9670–9678 (2001). ArticleCASPubMed Google Scholar
Gustavasson, J. et al. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J.13, 1961–1971 (1999). Article Google Scholar
Chamberlain, L. H. Inhibition of isoprenoid biosynthesis causes insulin resistance in 3T3-L1 adipocytes. FEBS Lett.507, 357–361 (2001). ArticleCASPubMed Google Scholar
Takaguri, A., Sotoh, K., Itagaki, M., Tokumitsu, Y. & Ichihara, K. Effects of atorvastatin and pravastatin on signal transduction related to glucose uptake in 3T3L-1 adipocytes. J. Pharmacol. Sci.107, 80–89 (2008). ArticleCASPubMed Google Scholar
Ganesan, S. & Ito, M. K. Coenzyme Q10 ameliorates the reduction in GLUT4 transporter expression induced by simvastatin in 3T3-L1 adipocytes. Metab. Syndr. Relat. Disord.11, 251–255 (2013). ArticleCASPubMed Google Scholar
Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol.11, 98–107 (2011). ArticleCASPubMed Google Scholar
Jager, J., Grémeaux, T., Cormont, M., Le Marchand-Brustel, Y. & Tanti, J. F. Interleukin-β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology148, 241–251 (2007). ArticleCASPubMed Google Scholar
Lagathu, C. Long term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia49, 2162–2173 (2006). ArticleCASPubMed Google Scholar
Vandanmagsar, B. et al. The NLRP3 inflammasone instigates obesity-induced inflammation and insulin resistance. Nat. Med.17, 179–188 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Stienstra, R. et al. The inflammasone-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab.12, 593–605 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Lee H-M. et al. Upregulated NLRP3 inflammasome in patients with type 2 diabetes. Diabetes62, 194–204 (2013). ArticleCASPubMed Google Scholar
Henriskbo, B. D. et al. Fluvastatin causes NLRP3 inflammasome-mediated adipose insulin resistance. Diabetes63, 3742–3747 (2014). ArticleCAS Google Scholar
Baker, W. L., Talati, R., White, C. M. & Coleman, C. I. Differing effects on insulin sensitivity in non-diabetics: a systematic review and meta-analysis. Diabetes Res. Clin. Pract.87, 98–107 (2010). ArticleCASPubMed Google Scholar
Kadowaki, T. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes and the metabolic syndrome. J. Clin. Invest.116, 1784–1792 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Li, S., Shin, H. J., Ding, E. L. & van Dam, R. M. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA302, 179–188 (2009). ArticleCASPubMed Google Scholar
Hara, K. et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes51, 536–540 (2002). ArticleCASPubMed Google Scholar
Kondo, H. et al. Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. Diabetes51, 2325–2328 (2002). ArticleCASPubMed Google Scholar
Strumvoll, M. et al. Association of the T-G polymorphism in adiponectin (exon 20 with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes51, 37–41 (2002). Article Google Scholar
Roehrich, M. E. et al. Insulin-secreting β-cell dysfunction induced by human lipoproteins. J. Biol. Chem.278, 18368–18375 (2003). ArticleCASPubMed Google Scholar
Hao, M., Head, W. S., Gunawardeana, S. C., Hasty, A. H. & Piston, D. W. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic β-cell dysfunction. Diabetes56, 2328–2338 (2007). ArticleCASPubMed Google Scholar
Rütti, S. et al. Low and high density lipoproteins modulate function, apoptosis and proliferation of primary human and murine pancreatic β-cells. Endocrinology150, 4521–4530 (2009). ArticleCASPubMed Google Scholar
Kruit, J. K., Brunham, L. R., Verchere, C. B. & Hayden, M. R. HDL and LDL cholesterol significantly influence β-cell function in type 2 diabetes mellitus. Curr. Opin. Lipidol.21, 178–185 (2010). ArticleCASPubMed Google Scholar
Brunham, L. R. et al. β-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med.13, 340–347 (2007). CASPubMed Google Scholar
Fryirs, M. A. et al. Effects of high-density lipoproteins on pancreatic β-cell insulin secretion. Arterioscler. Thromb. Vasc. Biol.30, 1642–1648 (2010). ArticleCASPubMed Google Scholar
Sturek, J. M. et al. An intracellular role for ABCG1-mediated cholesterol transport in the regulated secretory pathway of mouse pancreatic β cells. J. Clin. Invest.120, 2575–2589 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Bogan, J. S., Xu, Y. & Hao, M. Cholesterol accumulation increases insulin granule size and impairs membrane trafficking. Traffic13, 1466–1480 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Metz, S. A., Rabaglia, M. E., Stock, J. B. & Kowluru, A. Modulation of insulin secretion from normal rat islets by inhibitors of the post-translational modifications of GTP-binding proteins. Biochem. J.295, 31–40 (1993). ArticlePubMedPubMed CentralCAS Google Scholar
Li, G., Regazzi, R., Roche, E. & Wollheim, C. B. Blockade of mevalonate production by lovastatin attenuates bombesin and vasopressin potentiation of nutrient-induced insulin secretion in HIT-T15 cells. Biochem. J.289, 379–385 (1993). ArticlePubMedPubMed CentralCAS Google Scholar
Yada, T., Nakata, M., Shiraishi, T. & Kakei, M. Inhibition by simvastatin, but not pravastatin, of glucose-induced cytosolic Ca2+ signalling and insulin secretion due to blockade of L-type Ca2+ channels in rat islet β-cells. Br. J. Pharmacol.126, 1205–1213 (1999). ArticlePubMedPubMed CentralCAS Google Scholar
Chen, Z. et al. Atorvastatin helps preserve pancreatic β cell function in obese C57BL/6 J mice and the effect is related to increased pancreas proliferation and amelioration of endoplasmic-reticulum stress. Lipids Health Dis.13, 98 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Mita, T. et al. Preferable effect of pravastatin compared to atorvastatin on β cell function in Japanese early-state type 2 diabetes with hypercholesterolemia. Endocr. J.54, 441–447 (2007). ArticleCASPubMed Google Scholar
Stumvoll, M. et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care23, 295–301 (2000). ArticleCASPubMed Google Scholar
Matsuda, M. & DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycaemic insulin clamp. Diabetes Care22, 1462–1470 (1999). ArticleCASPubMed Google Scholar
Larsen, S. et al. Simvastatin effects on skeletal muscle: relation to decreased mitochondrial function and glucose intolerance. JAMA61, 44–53 (2013). CAS Google Scholar
Banach, M. et al. Statin therapy and new-onset diabetes: molecular mechanisms and clinical relevance. Curr. Pharm. Des.19, 4904–4912 (2013). ArticleCASPubMed Google Scholar
Sattar, N. & Taskinen, M. R. Statins are diabetogenic—myth or reality? Atheroscler. Suppl.13, 1–10 (2012). ArticleCASPubMed Google Scholar
Lindström, J. et al. The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3 year results on diet and physical activity. Diabetes Care26, 3230–3236 (2003). ArticlePubMed Google Scholar
Lindström, J. et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet368, 1673–1679 (2006). ArticlePubMed Google Scholar
Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med.346, 393–403 (2002). ArticleCASPubMed Google Scholar
Diabetes Prevention Program Research Group. The 10 year cost-effectiveness of lifestyle and metformin for diabetes prevention: an intent-to-treat analysis of the DPP/DPPOS. Diabetes Care35, 723–730 (2012).
Fradkin, J. E., Roberts, B. T. & Rodgers, G. P. What's preventing us from preventing type 2 diabetes? N. Engl. J. Med.367, 1177–1179 (2012). ArticleCASPubMed Google Scholar
Nielsen, S. F. & Nordestgaard, B. G. Statin use before diabetes diagnosis and risk of microvascular disease: a nationwide nested matched study. Lancet Diabetes Endocrinol.2, 894–900 (2014). ArticleCASPubMed Google Scholar
Chen, S. C & Tseng, C. H. Dyslipidaemia, kidney disease and cardiovascular disease in diabetic patients. Rev. Diabet. Stud.10, 88–100 (2013). ArticlePubMedPubMed Central Google Scholar
Zafrir, B. & Jain, M. Lipid-lowering therapies, glucose control and incident diabetes: evidence, mechanisms and clinical implications. Cardiovasc. Drugs Ther.28, 361–377 (2014). ArticleCASPubMed Google Scholar
Tennebaum, A. & Fisman, E. Z. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc. Diabetol.11, 140–149 (2012). ArticleCAS Google Scholar