Nongenomic actions of thyroid hormone (original) (raw)
Cheng, S. Y., Leonard, J. L. & Davis, P. J. Molecular aspects of thyroid hormone actions. Endocr. Rev.31, 139–170 (2010). CASPubMedPubMed Central Google Scholar
Davis, P. J., Davis, F. B., Mousa, S. A., Luidens, M. K. & Lin, H. Y. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu. Rev. Pharmacol. Toxicol.51, 99–115 (2011). CASPubMed Google Scholar
Sterling, K., Brenner, M. A. & Sakurada, T. Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in vivo. Science210, 340–342 (1980). CASPubMed Google Scholar
Siegrist-Kaiser, C. A., Juge-Aubry, C., Tranter, M. P., Ekenbarger, D. M. & Leonard, J. L. Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J. Biol. Chem.265, 5296–5302 (1990). CASPubMed Google Scholar
Mylotte, K. M. et al. Milrinone and thyroid hormone stimulate myocardial membrane Ca2+-ATPase activity and share structural homologies. Proc. Natl Acad. Sci. USA82, 7974–7978 (1985). CASPubMedPubMed Central Google Scholar
Davis, P. J., Davis, F. B. & Lawrence, W. D. Thyroid hormone regulation of membrane Ca2+-ATPase activity. Endocr. Res.15, 651–682 (1989). CASPubMed Google Scholar
Lin, H. Y. et al. Nongenomic regulation by thyroid hormone of plasma membrane ion and small molecule pumps. Discov. Med.14, 199–206 (2012). PubMed Google Scholar
Davis, F. B., Cody, V., Davis, P. J., Borzynski, L. J. & Blas, S. D. Stimulation by thyroid hormone analogues of red blood cell Ca2+-ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system. J. Biol. Chem.258, 12373–12377 (1983). CASPubMed Google Scholar
Nieman, L. K. et al. Effect of end-stage renal disease on responsiveness to calmodulin and thyroid hormone of calcium-ATPase in human red blood cells. Kidney Int. Suppl.16, S167–S170 (1983). CASPubMed Google Scholar
Lei, J., Bhargava, M. & Ingbar, D. H. Cell-specific signal transduction pathways regulating Na+-K+-ATPase. Focus on 'short-term effects of thyroid hormones on the Na+-K+-ATPase activity of chick embryo hepatocytes during development: focus on signal transduction'. Am. J. Physiol. Cell Physiol.296, C1–C3 (2009). CASPubMed Google Scholar
Lei, J., Mariash, C. N. & Ingbar, D. H. 3,3′,5-triiodo-l-thyronine up-regulation of Na,K-ATPase activity and cell surface expression in alveolar epithelial cells is Src kinase- and phosphoinositide 3-kinase-dependent. J. Biol. Chem.279, 47589–47600 (2004). CASPubMed Google Scholar
Kahaly, G. J. & Dillmann, W. H. Thyroid hormone action in the heart. Endocr. Rev.26, 704–728 (2005). CASPubMed Google Scholar
Lin, H. Y. et al. Potentiation by thyroid hormone of human IFN-γ-induced HLA-DR expression. J. Immunol.161, 843–849 (1998). CASPubMed Google Scholar
Grasselli, E. et al. Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells. J. Endocrinol.210, 59–69 (2011). CASPubMed Google Scholar
Lin, H. Y., Davis, F. B., Gordinier, J. K., Martino, L. J. & Davis, P. J. Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am. J. Physiol.276, C1014–C1024 (1999). CASPubMed Google Scholar
Lin, H. Y., Shih, A., Davis, F. B. & Davis, P. J. Thyroid hormone promotes the phosphorylation of STAT3 and potentiates the action of epidermal growth factor in cultured cells. Biochem. J.338, 427–432 (1999). CASPubMedPubMed Central Google Scholar
Shih, A., Lin, H. Y., Davis, F. B. & Davis, P. J. Thyroid hormone promotes serine phosphorylation of p53 by mitogen-activated protein kinase. Biochemistry40, 2870–2878 (2001). CASPubMed Google Scholar
Davis, F. B. et al. Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ. Res.94, 1500–1506 (2004). CASPubMed Google Scholar
Cao, H. J., Lin, H. Y., Luidens, M. K., Davis, F. B. & Davis, P. J. Cytoplasm-to-nucleus shuttling of thyroid hormone receptor-β1 (Trβ1) is directed from a plasma membrane integrin receptor by thyroid hormone. Endocr. Res.34, 31–42 (2009). PubMed Google Scholar
Lin, H. Y. et al. L-thyroxine versus 3,5,3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am. J. Physiol. Cell Physiol.296, C980–C991 (2009). CASPubMed Google Scholar
Tang, H. Y., Lin, H. Y., Zhang, S., Davis, F. B. & Davis, P. J. Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology145, 3265–3272 (2004). CASPubMed Google Scholar
Hammes, S. R. & Davis, P. J. Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Best Pract. Res. Clin. Endocrinol. Metab.29, 581–593 (2015). CASPubMedPubMed Central Google Scholar
Bharali, D. J., Yalcin, M., Davis, P. J. & Mousa, S. A. Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer. Nanomed. (Lond.)8, 1943–1954 (2013). CAS Google Scholar
Bergh, J. J. et al. Integrin αVβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology146, 2864–2871 (2005). CASPubMed Google Scholar
Davis, P. J. et al. Cancer cell gene expression modulated from plasma membrane integrin αvβ3 by thyroid hormone and nanoparticulate tetrac. Front. Endocrinol. (Lausanne)5, 240 (2014). Google Scholar
Davis, P. J. et al. Corrigendum: 'cancer cell gene expression modulated from plasma membrane integrin αvβ3 by thyroid hormone and nanoparticulate tetrac'. Front. Endocrinol. (Lausanne)6, 98 (2015). Google Scholar
Lin, H. Y. et al. Nuclear monomeric integrin αv in cancer cells is a coactivator regulated by thyroid hormone. FASEB J.27, 3209–3216 (2013). CASPubMed Google Scholar
Goolden, A. W., Gartside, J. M., Jackson, D. J. & Osorio, C. Uptake of 131I triiodothyronine by red cells. A diagnostic test of thyroid function. Lancet2, 218–220 (1962). CASPubMed Google Scholar
Walfish, P. G., Britton, A., Volpe, R. & Ezrin, C. Experience with an in vitro test of thyroid function — the red blood cell uptake of l-triiodothyronine labelled with radioactive iodine. Can. Med. Assoc. J.84, 637–641 (1961). CASPubMedPubMed Central Google Scholar
Kalyanaraman, H. et al. Nongenomic thyroid hormone signaling occurs through a plasma membrane-localized receptor. Sci. Signal.7, ra48 (2014). PubMedPubMed Central Google Scholar
Chen, Y. et al. Thyroid hormone enhances nitric oxide-mediated bacterial clearance and promotes survival after meningococcal infection. PLoS ONE7, e41445 (2012). CASPubMedPubMed Central Google Scholar
Vié, M. P. et al. Purification, molecular cloning, and functional expression of the human nicodinamide-adenine dinucleotide phosphate-regulated thyroid hormone-binding protein. Mol. Endocrinol.11, 1728–1736 (1997). PubMed Google Scholar
Osty, J., Rappaport, L., Samuel, J. L. & Lennon, A. M. Characterization of a cytosolic triiodothyronine binding protein in atrium and ventricle of rat heart with different sensitivity toward thyroid hormone levels. Endocrinology122, 1027–1033 (1988). CASPubMed Google Scholar
Nishii, Y. et al. Changes in cytosolic 3,5,3′-tri-iodo-l-thyronine (T3) binding activity during administration of L-thyroxine to thyroidectomized rats: cytosolic T3-binding protein and its activator act as intracellular regulators for nuclear T3 binding. J. Endocrinol.123, 99–104 (1989). CASPubMed Google Scholar
Ashizawa, K. & Cheng, S. Y. Regulation of thyroid hormone receptor-mediated transcription by a cytosol protein. Proc. Natl Acad. Sci. USA89, 9277–9281 (1992). CASPubMedPubMed Central Google Scholar
Takeshige, K. et al. Cytosolic T3-binding protein modulates dynamic alteration of T3-mediated gene expression in cells. Endocr. J.61, 561–570 (2014). CASPubMed Google Scholar
Fanjul, A. N. & Farias, R. N. Cold-sensitive cytosolic 3,5,3′-triiodo-l-thyronine-binding protein and pyruvate kinase from human erythrocytes share similar regulatory properties of hormone binding by glycolytic intermediates. J. Biol. Chem.268, 175–179 (1993). CASPubMed Google Scholar
Hallen, A., Cooper, A. J., Jamie, J. F. & Karuso, P. Insights into enzyme catalysis and thyroid hormone regulation of cerebral ketimine reductase/mu-crystallin under physiological conditions. Neurochem. Res.40, 1252–1266 (2015). CASPubMed Google Scholar
Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand binding to integrins. J. Biol. Chem.275, 21785–21788 (2000). CASPubMed Google Scholar
Lin, H. Y. et al. Identification and functions of the plasma membrane receptor for thyroid hormone analogues. Discov. Med.11, 337–347 (2011). PubMed Google Scholar
Cody, V., Davis, P. J. & Davis, F. B. Molecular modeling of the thyroid hormone interactions with αvβ3 integrin. Steroids72, 165–170 (2007). CASPubMed Google Scholar
Hoffman, S. J. et al. Rapid inhibition of thyroxine-induced bone resorption in the rat by an orally active vitronectin receptor antagonist. J. Pharmacol. Exp. Ther.302, 205–211 (2002). CASPubMed Google Scholar
Lin, H. Y. et al. Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system. PLoS Comput. Biol.7, e1001073 (2011). CASPubMedPubMed Central Google Scholar
Liu, X., Zheng, N., Shi, Y. N., Yuan, J. & Li, L. Thyroid hormone induced angiogenesis through the integrin αvβ3/protein kinase D/histone deacetylase 5 signaling pathway. J. Mol. Endocrinol.52, 245–254 (2014). CASPubMed Google Scholar
D'Arezzo, S. et al. Rapid nongenomic effects of 3,5,3′-triiodo-l-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology145, 5694–5703 (2004). CASPubMed Google Scholar
Lei, J., Mariash, C. N., Bhargava, M., Wattenberg, E. V. & Ingbar, D. H. T3 increases Na-K-ATPase activity via a MAPK/ERK1/2-dependent pathway in rat adult alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol.294, L749–L754 (2008). CASPubMed Google Scholar
Yonkers, M. A. & Ribera, A. B. Sensory neuron sodium current requires nongenomic actions of thyroid hormone during development. J. Neurophysiol.100, 2719–2725 (2008). PubMedPubMed Central Google Scholar
Yonkers, M. A. & Ribera, A. B. Molecular components underlying nongenomic thyroid hormone signaling in embryonic zebrafish neurons. Neural Dev.4, 20 (2009). PubMedPubMed Central Google Scholar
Cao, J. H. et al. L-thyroxine attenuates pyramidal neuron excitability in rat acute prefrontal cortex slices. Immunol. Endocr. Metab. Agents Med. Chem.11, 152–156 (2011). CAS Google Scholar
Carvalho, F. A. et al. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano4, 4609–4620 (2010). CASPubMed Google Scholar
Odievre, M. H. et al. Modulation of erythroid adhesion receptor expression by hydroxyurea in children with sickle cell disease. Haematologica93, 502–510 (2008). CASPubMed Google Scholar
Zanatta, A. P., Zanatta, L., Goncalves, R., Zamoner, A. & Silva, F. R. Integrin participates in the effect of thyroxine on plasma membrane in immature rat testis. Biochim. Biophys. Acta1830, 2629–2637 (2013). CASPubMed Google Scholar
Scarlett, A. et al. Thyroid hormone stimulation of extracellular signal-regulated kinase and cell proliferation in human osteoblast-like cells is initiated at integrin αVβ3. J. Endocrinol.196, 509–517 (2008). CASPubMed Google Scholar
Cayrol, F. et al. Integrin αvβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells. Blood125, 841–851 (2015). CASPubMedPubMed Central Google Scholar
Barbakadze, T., Natsvlishvili, N. & Mikeladze, D. Thyroid hormones differentially regulate phosphorylation of ERK and Akt via integrin αvβ3 receptor in undifferentiated and differentiated PC-12 cells. Cell Biochem. Funct.32, 282–286 (2014). CASPubMed Google Scholar
Schmohl, K. A. et al. Thyroid hormones and tetrac: new regulators of tumour stroma formation via integrin αvβ3. Endocr. Relat. Cancer22, 941–952 (2015). CASPubMed Google Scholar
Zvibel, I., Atias, D., Phillips, A., Halpern, Z. & Oren, R. Thyroid hormones induce activation of rat hepatic stellate cells through increased expression of p75 neurotrophin receptor and direct activation of Rho. Lab. Invest.90, 674–684 (2010). CASPubMed Google Scholar
Dekkers, B. G. et al. L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1. Am. J. Physiol. Lung Cell. Mol. Physiol.308, L301–L306 (2015). CASPubMed Google Scholar
Stenzel, D., Wilsch-Brauninger, M., Wong, F. K., Heuer, H. & Huttner, W. B. Integrin αvβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development141, 795–806 (2014). CASPubMed Google Scholar
Mousa, S. A., O'Connor, L., Davis, F. B. & Davis, P. J. Proangiogenesis action of the thyroid hormone analog 3,5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin mediated. Endocrinology147, 1602–1607 (2006). CASPubMed Google Scholar
Mousa, S. A. et al. The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J. Cardiovasc. Pharmacol.46, 356–360 (2005). CASPubMed Google Scholar
Mousa, S. S., Davis, F. B., Davis, P. J. & Mousa, S. A. Human platelet aggregation and degranulation is induced in vitro by l-thyroxine, but not by 3,5,3′-triiodo-l-thyronine or diiodothyropropionic acid (DITPA). Clin. Appl. Thromb. Hemost.16, 288–293 (2010). PubMed Google Scholar
Horacek, J. et al. Prothrombotic changes due to an increase in thyroid hormone levels. Eur. J. Endocrinol.172, 537–542 (2015). CASPubMed Google Scholar
Yalcin, M. et al. Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J. Clin. Endocrinol. Metab.95, 1972–1980 (2010). CASPubMed Google Scholar
Glinskii, A. B. et al. Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac). Cell Cycle8, 3562–3570 (2009). CASPubMed Google Scholar
Mousa, S. A. et al. Tetraiodothyroacetic acid and its nanoformulation inhibit thyroid hormone stimulation of non-small cell lung cancer cells in vitro and its growth in xenografts. Lung Cancer76, 39–45 (2012). PubMed Google Scholar
Yalcin, M. et al. Response of human pancreatic cancer cell xenografts to tetraiodothyroacetic acid nanoparticles. Horm. Cancer4, 176–185 (2013). CASPubMed Google Scholar
Yalcin, M. et al. Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res.29, 3825–3831 (2009). CASPubMed Google Scholar
Yoshida, T., Gong, J., Xu, Z., Wei, Y. & Duh, E. J. Inhibition of pathological retinal angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac). Exp. Eye Res.94, 41–48 (2012). CASPubMed Google Scholar
Freindorf, M. et al. Combined QM/MM study of thyroid and steroid hormone analogue interactions with αvβ3 integrin. J. Biomed. Biotechnol.2012, 959057 (2012). PubMedPubMed Central Google Scholar
Yalcin, M. et al. Tetraiodothyroacetic acid and tetraiodothyroacetic acid nanoparticle effectively inhibit the growth of human follicular thyroid cell carcinoma. Thyroid20, 281–286 (2010). CASPubMed Google Scholar
Meng, R. et al. Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung carcinoma cells. PLoS ONE6, e27547 (2011). CASPubMedPubMed Central Google Scholar
Schweizer, U., Johannes, J., Bayer, D. & Braun, D. Structure and function of thyroid hormone plasma membrane transporters. Eur. Thyroid J.3, 143–153 (2014). CASPubMedPubMed Central Google Scholar
Visser, W. E., Friesema, E. C. & Visser, T. J. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol. Endocrinol.25, 1–14 (2011). CASPubMedPubMed Central Google Scholar
Fu, J., Refetoff, S. & Dumitrescu, A. M. Inherited defects of thyroid hormone-cell-membrane transport: review of recent findings. Curr. Opin. Endocrinol. Diabetes Obes.20, 434–440 (2013). CASPubMedPubMed Central Google Scholar
Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J. & Larsen, P. R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev.23, 38–89 (2002). CASPubMed Google Scholar
Horn, S. & Heuer, H. Thyroid hormone action during brain development: more questions than answers. Mol. Cell. Endocrinol.315, 19–26 (2010). CASPubMed Google Scholar
Schroeder, A. C. & Privalsky, M. L. Thyroid hormones, T3 and T4, in the brain. Front. Endocrinol. (Lausanne)5, 40 (2014). Google Scholar
Morte, B. & Bernal, J. Thyroid hormone action: astrocyte–neuron communication. Front. Endocrinol. (Lausanne)5, 82 (2014). Google Scholar
Leonard, J. L. Regulation of T3 production in the brain. Acta Med. Austriaca19 (Suppl. 1), 5–8 (1992). PubMed Google Scholar
Visser, T. J. Pathways of thyroid hormone metabolism. Acta Med. Austriaca23, 10–16 (1996). CASPubMed Google Scholar
Kuiper, G. G., Kester, M. H., Peeters, R. P. & Visser, T. J. Biochemical mechanisms of thyroid hormone deiodination. Thyroid15, 787–798 (2005). CASPubMed Google Scholar
Farwell, A. P., Lynch, R. M., Okulicz, W. C., Comi, A. M. & Leonard, J. L. The actin cytoskeleton mediates the hormonally regulated translocation of type II iodothyronine 5′-deiodinase in astrocytes. J. Biol. Chem.265, 18546–18553 (1990). CASPubMed Google Scholar
Farwell, A. P. & Leonard, J. L. in Recent Research Developments in Neuroendocrinology — Thyroid Hormone and Brain Maturation (ed. Hendrich, C. E.) 113–130 (Research Signpost, 1997). Google Scholar
Faivre-Sarrailh, C. & Rabie, A. Developmental study of factors controlling microtubule in vitro cold-stability in rat cerebrum. Brain Res.470, 199–204 (1988). CASPubMed Google Scholar
Farwell, A. P., Dubord-Tomasetti, S. A., Pietrzykowski, A. Z. & Leonard, J. L. Dynamic nongenomic actions of thyroid hormone in the developing rat brain. Endocrinology147, 2567–2574 (2006). CASPubMed Google Scholar
Venstrom, K. A. & Reichardt, L. F. Extracellular matrix 2: role of extracellular matrix molecules and their receptors in the nervous system. FASEB J.7, 996–1003 (1993). CASPubMed Google Scholar
Liesi, P. Extracellular matrix and neuronal movement. Experientia46, 900–907 (1990). CASPubMed Google Scholar
Liesi, P. & Silver, J. Is astrocyte laminin involved in axon guidance in the mammalian CNS? Dev. Biol.130, 774–785 (1988). CASPubMed Google Scholar
Liesi, P. Laminin-immunoreactive glia distinguish regenerative adult CNS systems from non-regenerative ones. EMBO J.4, 2505–2511 (1985). CASPubMedPubMed Central Google Scholar
Hager, G., Dodt, H. U., Zieglgänsberger, W. & Liesi, P. Novel forms of neuronal migration in the rat cerebellum. J. Neurosci. Res.40, 207–219 (1995). CASPubMed Google Scholar
Farwell, A. P. & Dubord-Tomasetti, S. A. Thyroid hormone regulates the expression of laminin in the developing rat cerebellum. Endocrinology140, 4221–4227 (1999). CASPubMed Google Scholar
Hynes, R. O. Integrin: versitility, modulation, and signaling in cell adhesion. Cell69, 11–25 (1992). CASPubMed Google Scholar
Maartens, A. P. & Brown, N. H. Anchors and signals: the diverse roles of integrins in development. Curr. Top. Dev. Biol.112, 233–272 (2015). CASPubMed Google Scholar
Farwell, A. P., Tranter, M. P. & Leonard, J. L. Thyroxine-dependent regulation of integrin–laminin interactions in astrocytes. Endocrinology136, 3909–3915 (1995). CASPubMed Google Scholar
Farwell, A. P. & Dubord, S. A. Thyroid hormone regulates neurite outgrowth and neuronal migration onto laminin. Thyroid6, S-27 (1996). Google Scholar
Farwell, A. P. & Dubord-Tomasetti, S. A. Thyroid hormone regulates the extracellular organization of laminin on astrocytes. Endocrinology140, 5014–5021 (1999). CASPubMed Google Scholar
Dodd, J. & Jessel, T. M. Axon guidance and the patterning of neuronal projections in vertebrates. Science242, 692–699 (1988). CASPubMed Google Scholar
Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science274, 1123–1133 (1996). CASPubMed Google Scholar
McKerracher, L., Chamoux, M. & Arregui, C. O. Role of laminin and integrin interactions in growth cone guidance. Mol. Neurobiol.12, 95–116 (1996). CASPubMed Google Scholar
Schmidt, C. E., Dai, J., Lauffenburger, D. A., Sheetz, M. P. & Horwitz, A. F. Integrin–cytoskeletal interactions in neuronal growth cones. J. Neurosci.15, 3400–3407 (1995). CASPubMedPubMed Central Google Scholar
Farwell, A. P., Dubord-Tomasetti, S. A., Pietrzykowski, A. Z., Stachelek, S. J. & Leonard, J. L. Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3′,5′-triiodothyronine. Brain Res. Dev. Brain Res.154, 121–135 (2005). CASPubMed Google Scholar
Safran, M., Farwell, A., Rokos, H. & Leonard, J. Structural requirements of iodothyronines for the rapid inactivation and internalization of type II iodothyronine 5′-deiodinase in glial cells. J. Biol. Chem.268, 14224–14229 (1993). CASPubMed Google Scholar
Chassande, O. et al. Identification of transcripts initiated from an internal promoter in the c-erbAα locus that encode inhibitors of retinoic acid receptor-α and triiodothyronine receptor activities. Mol. Endocrinol.11, 1278–1290 (1997). CASPubMed Google Scholar
Ribeiro, R. C. et al. X-ray crystallographic and functional studies of thyroid hormone receptor. J. Steroid Biochem. Mol. Biol.65, 133–141 (1998). CASPubMed Google Scholar
Wagner, R. L. et al. A structural role for hormone in the thyroid hormone receptor. Nature378, 690–697 (1995). CASPubMed Google Scholar
Wagner, R. L. et al. Hormone selectivity in thyroid hormone receptors. Mol. Endocrinol.15, 398–410 (2001). CASPubMed Google Scholar
Furuya, F. et al. Nuclear receptor corepressor is a novel regulator of phosphatidylinositol 3-kinase signaling. Mol. Cell. Biol.27, 6116–6126 (2007). CASPubMedPubMed Central Google Scholar
Lu, C., Willingham, M. C., Furuya, F. & Cheng, S. Y. Activation of phosphatidylinositol 3-kinase signaling promotes aberrant pituitary growth in a mouse model of thyroid-stimulating hormone-secreting pituitary tumors. Endocrinology149, 3339–3345 (2008). CASPubMedPubMed Central Google Scholar
Fozzatti, L., Lu, C., Kim, D. W. & Cheng, S. Y. Differential recruitment of nuclear coregulators directs the isoform-dependent action of mutant thyroid hormone receptors. Mol. Endocrinol.25, 908–921 (2011). CASPubMedPubMed Central Google Scholar
Hanna, S. & El-Sibai, M. Signaling networks of Rho GTPases in cell motility. Cell. Signal.25, 1955–1961 (2013). CASPubMed Google Scholar
Cao, X., Kambe, F., Moeller, L. C., Refetoff, S. & Seo, H. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol. Endocrinol.19, 102–112 (2005). CASPubMed Google Scholar
Verga Falzacappa, C. et al. Thyroid hormone receptor TRβ1 mediates Akt activation by T3 in pancreatic β cells. J. Mol. Endocrinol.38, 221–233 (2007). PubMed Google Scholar
Martin, N. P. et al. A rapid cytoplasmic mechanism for PI3 kinase regulation by the nuclear thyroid hormone receptor, TRβ, and genetic evidence for its role in the maturation of mouse hippocampal synapses in vivo. Endocrinology155, 3713–3724 (2014). PubMedPubMed Central Google Scholar
Magnus-Levy, A. Uber den respiratorischen Gaswechechsel unter dem Einfluss der Thyroidea sowie unter verschiedenen pathologischen Zustanden. Berlin Klinische Wochenschrift32, 650–652 (1895). Google Scholar
Yehuda-Shnaidman, E., Kalderon, B. & Bar-Tana, J. Thyroid hormone, thyromimetics, and metabolic efficiency. Endocr. Rev.35, 35–58 (2014). CASPubMed Google Scholar
Cioffi, F., Senese, R., Lanni, A. & Goglia, F. Thyroid hormones and mitochondria: with a brief look at derivatives and analogues. Mol. Cell. Endocrinol.379, 51–61 (2013). CASPubMed Google Scholar
Weitzel, J. M. & Iwen, K. A. Coordination of mitochondrial biogenesis by thyroid hormone. Mol. Cell. Endocrinol.342, 1–7 (2011). CASPubMed Google Scholar
Sterling, K. & Milch, P. O. Thyroid hormone binding by a component of mitochondrial membrane. Proc. Natl Acad. Sci. USA72, 3225–3229 (1975). CASPubMedPubMed Central Google Scholar
Goglia, F., Torresani, J., Bugli, P., Barletta, A. & Liverini, G. In vitro binding of triiodothyronine to rat liver mitochondria. Pflugers Arch.390, 120–124 (1981). CASPubMed Google Scholar
Morel, G., Ricard-Blum, S. & Ardail, D. Kinetics of internalization and subcellular binding sites for T3 in mouse liver. Biol. Cell86, 167–174 (1996). CASPubMed Google Scholar
Wrutniak, C. et al. A 43-kDa protein related to c-Erb A α1 is located in the mitochondrial matrix of rat liver. J. Biol. Chem.270, 16347–16354 (1995). CASPubMed Google Scholar
Wrutniak-Cabello, C., Casas, F. & Cabello, G. Thyroid hormone action in mitochondria. J. Mol. Endocrinol.26, 67–77 (2001). CASPubMed Google Scholar
Casas, F. et al. A variant form of the nuclear triiodothyronine receptor c-Erb A α1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol. Cell. Biol.19, 7913–7924 (1999). CASPubMedPubMed Central Google Scholar
Pessemesse, L. et al. p28, a truncated form of TRα1 regulates mitochondrial physiology. FEBS Lett.588, 4037–4043 (2014). CASPubMed Google Scholar
Horst, C., Rokos, H. & Seitz, H. J. Rapid stimulation of hepatic oxygen consumption by 3,5-di-iodo-l-thyronine. Biochem. J.261, 945–950 (1989). CASPubMedPubMed Central Google Scholar
Tata, J. R., Ernster, L. & Lindberg, O. Control of basal metabolic rate by thyroid hormones and cellular function. Nature193, 1058–1060 (1962). CASPubMed Google Scholar
Moreno, M., Lanni, A., Lombardi, A. & Goglia, F. How the thyroid controls metabolism in the rat: different roles for triiodothyronine and diiodothyronines. J. Physiol.505, 529–538 (1997). CASPubMedPubMed Central Google Scholar
Tata, J. R. Inhibition of the biological action of thyroid hormones by actinomycin D and puromycin. Nature197, 1167–1168 (1963). CASPubMed Google Scholar
Lombardi, A. et al. 3,5-diiodo-l-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats. PLoS ONE10, e0116498 (2015). PubMedPubMed Central Google Scholar
Padron, A. S. et al. Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J. Endocrinol.221, 415–427 (2014). CASPubMedPubMed Central Google Scholar
Goglia, F., Lanni, A., Horst, C., Moreno, M. & Thoma, R. In vitro binding of 3,5-di-iodo-l-thyronine to rat liver mitochondria. J. Mol. Endocrinol.13, 275–282 (1994). CASPubMed Google Scholar
Arnold, S., Goglia, F. & Kadenbach, B. 3,5-diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur. J. Biochem.252, 325–330 (1998). CASPubMed Google Scholar
Navarrete-Ramirez, P., Luna, M., Valverde, R. C. & Orozco, A. 3,5-di-iodothyronine stimulates tilapia growth through an alternate isoform of thyroid hormone receptor β1. J. Mol. Endocrinol.52, 1–9 (2014). CASPubMed Google Scholar
Lanni, A. et al. 3,5-diiodo-l-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J.19, 1552–1554 (2005). CASPubMed Google Scholar
Moreno, M. et al. 3,5-diiodo-l-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB J.25, 3312–3324 (2011). CASPubMed Google Scholar
de Lange, P. et al. Nonthyrotoxic prevention of diet-induced insulin resistance by 3,5-diiodo-l-thyronine in rats. Diabetes60, 2730–2739 (2011). CASPubMedPubMed Central Google Scholar
Singh, B. K. et al. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes. J. Biol. Chem.288, 30365–30372 (2013). CASPubMedPubMed Central Google Scholar
Shang, G. et al. 3,5-diiodo-l-thyronine ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. Biochim. Biophys. Acta1832, 674–684 (2013). CASPubMed Google Scholar
Jonas, W. et al. 3,5-diiodo-l-thyronine (3,5-T2) exerts thyromimetic effects on hypothalamus–pituitary–thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology156, 389–399 (2015). PubMed Google Scholar
Goldberg, I. J. et al. Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology153, 5143–5149 (2012). CASPubMedPubMed Central Google Scholar
Luidens, M. K., Mousa, S. A., Davis, F. B., Lin, H. Y. & Davis, P. J. Thyroid hormone and angiogenesis. Vascul. Pharmacol.52, 142–145 (2010). CASPubMed Google Scholar
Bogaard, H. J. et al. Severe pulmonary hypertension: the role of metabolic and endocrine disorders. Pulm. Circ.2, 148–154 (2012). PubMedPubMed Central Google Scholar
Al Husseini, A. et al. Thyroid hormone is highly permissive in angioproliferative pulmonary hypertension in rats. Eur. Respir. J.41, 104–114 (2013). CASPubMed Google Scholar
Lin, H. Y., Glinsky, G. V., Mousa, S. A. & Davis, P. J. Thyroid hormone and anti-apoptosis in tumor cells. Oncotarget6, 14735–14743 (2015). PubMedPubMed Central Google Scholar
Mousa, S. A. et al. Modulation of angiogenesis by thyroid hormone and hormone analogues: implications for cancer management. Angiogenesis17, 463–469 (2014). CASPubMed Google Scholar
Cohen, K. et al. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells. Oncotarget5, 6312–6322 (2014). PubMedPubMed Central Google Scholar
Cohen, K. et al. Relevance of the thyroid hormones–αvβ3 pathway in primary myeloma bone marrow cells and to bortezomib action. Leuk. Lymphoma56, 1107–1114 (2015). CASPubMed Google Scholar
Davis, P. J., Hercbergs, A., Luidens, M. K. & Lin, H. Y. Recurrence of differentiated thyroid carcinoma during full TSH suppression: is the tumor now thyroid hormone dependent? Horm. Cancer6, 7–12 (2015). CASPubMed Google Scholar
Lin, H. Y. et al. The pro-apoptotic action of stilbene-induced COX-2 in cancer cells: convergence with the anti-apoptotic effect of thyroid hormone. Cell Cycle8, 1877–1882 (2009). CASPubMed Google Scholar
Rudinger, A., Mylotte, K. M., Davis, P. J., Davis, F. B. & Blas, S. D. Rabbit myocardial membrane Ca2+-adenosine triphosphatase activity: stimulation in vitro by thyroid hormone. Arch. Biochem. Biophys.229, 379–385 (1984). CASPubMed Google Scholar
Zinman, T., Shneyvays, V., Tribulova, N., Manoach, M. & Shainberg, A. Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J. Cell. Physiol.207, 220–231 (2006). CASPubMed Google Scholar
Forini, F. et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology155, 4581–4590 (2014). PubMed Google Scholar
Bertrand, C. et al. Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging. PLoS ONE8, e75111 (2013). CASPubMedPubMed Central Google Scholar
Cohen, K. et al. Relevance of the thyroid hormones–αvβ3 pathway in primary myeloma bone marrow cells and to bortezomib action. Leuk. Lymphoma56, 1107–1114 (2014). PubMed Google Scholar
Gnoni, G. V. et al. 3,5,3′triiodo-l-thyronine induces SREBP-1 expression by non-genomic actions in human HEP G2 cells. J. Cell. Physiol.227, 2388–2397 (2012). CASPubMed Google Scholar