- Duntas, L. H. Thyroid disease and lipids. Thyroid 12, 287–293 (2002).
CAS PubMed Google Scholar
- Krotkiewski, M. Thyroid hormones and treatment of obesity. Int. J. Obes. Relat. Metab. Disord. 24, S116–S119 (2000).
CAS PubMed Google Scholar
- Singh, B. K. et al. Hepatic FOXO1 target genes are co-regulated by thyroid hormone via RICTOR protein deacetylation and MTORC2-AKT protein inhibition. J. Biol. Chem. 291, 198–214 (2016).
CAS PubMed Google Scholar
- Singh, B. K. et al. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes. J. Biol. Chem. 288, 30365–30372 (2013).
CAS PubMed PubMed Central Google Scholar
- Martinez-Sanchez, N. et al. Hypothalamic effects of thyroid hormones on metabolism. Best practice and research. Clin. Endocrinol. Metabolism 28, 703–712 (2014).
CAS Google Scholar
- Martinez-Sanchez, N. et al. Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell. Metab. 26, 212–229 (2017).
CAS PubMed PubMed Central Google Scholar
- Yen, P. M. & Sinha, R. Cellular action of thyroid hormone. Endotext https://www.ncbi.nlm.nih.gov/pubmed/25905423 (updated 12 Feb 2000).
- Lazar, M. A. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14, 184–193 (1993).
CAS PubMed Google Scholar
- Chamba, A. et al. Expression and function of thyroid hormone receptor variants in normal and chronically diseased human liver. J. Clin. Endocrinol. Metab. 81, 360–367 (1996).
CAS PubMed Google Scholar
- Baumann, C. T., Maruvada, P., Hager, G. L. & Yen, P. M. Nuclear cytoplasmic shuttling by thyroid hormone receptors. multiple protein interactions are required for nuclear retention. J. Biol. Chem. 276, 11237–11245 (2001).
CAS PubMed Google Scholar
- Davis, P. J., Goglia, F. & Leonard, J. L. Nongenomic actions of thyroid hormone. Nat. Rev. Endocrinol. 12, 111–121 (2016).
CAS PubMed Google Scholar
- Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014).
CAS PubMed PubMed Central Google Scholar
- Flamant, F. et al. Thyroid hormone signaling pathways: time for a more precise nomenclature. Endocrinology 158, 2052–2057 (2017).
PubMed PubMed Central Google Scholar
- Furuya, F., Hanover, J. A. & Cheng, S. Y. Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone β receptor. Proc. Natl Acad. Sci. USA 103, 1780–1785 (2006).
CAS PubMed Google Scholar
- Lin, H. Y. et al. Identification and functions of the plasma membrane receptor for thyroid hormone analogues. Discov. Med. 11, 337–347 (2011).
PubMed Google Scholar
- Araki, O., Ying, H., Zhu, X. G., Willingham, M. C. & Cheng, S. Y. Distinct dysregulation of lipid metabolism by unliganded thyroid hormone receptor isoforms. Mol. Endocrinol. 23, 308–315 (2009)This is an important work highlighting the distinct effects of unliganded THRs on lipid metabolism.
CAS PubMed PubMed Central Google Scholar
- Cable, E. E. et al. Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist. Hepatology 49, 407–417 (2009).This article presents an interesting study showing the efficacy of liver-targeted thyroid hormone agonist in reducing NAFLD in rodent models.
CAS PubMed Google Scholar
- Erion, M. D. et al. Targeting thyroid hormone receptor-β agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc. Natl Acad. Sci. USA 104, 15490–15495 (2007).
CAS PubMed Google Scholar
- Jornayvaz, F. R. et al. Thyroid hormone receptor-α gene knockout mice are protected from diet-induced hepatic insulin resistance. Endocrinology 153, 583–591 (2012).
CAS PubMed Google Scholar
- Liu, Y. Y. et al. A mutant thyroid hormone receptor α antagonizes peroxisome proliferator-activated receptor α signaling in vivo and impairs fatty acid oxidation. Endocrinology 148, 1206–1217 (2007).
CAS PubMed Google Scholar
- Shimizu, H. et al. NCoR1 and SMRT play unique roles in thyroid hormone action in vivo. Mol. Cell. Biol. 35, 555–565 (2015).
PubMed PubMed Central Google Scholar
- Fonseca, T. L. et al. Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proc. Natl Acad. Sci. USA 112, 14018–14023 (2015).
CAS PubMed Google Scholar
- Meyer zu Schwabedissen, H. E. et al. Hepatic organic anion transporting polypeptide transporter and thyroid hormone receptor interplay determines cholesterol and glucose homeostasis. Hepatology 54, 644–654 (2011).
CAS PubMed PubMed Central Google Scholar
- Mashek, D. G. Hepatic fatty acid trafficking: multiple forks in the road. Adv. Nutr. 4, 697–710 (2013).
CAS PubMed PubMed Central Google Scholar
- Klieverik, L. P. et al. Thyroid hormone effects on whole-body energy homeostasis and tissue-specific fatty acid uptake in vivo. Endocrinology 150, 5639–5648 (2009).
CAS PubMed Google Scholar
- Santana-Farre, R. et al. Influence of neonatal hypothyroidism on hepatic gene expression and lipid metabolism in adulthood. PLOS ONE 7, e37386 (2012).
CAS PubMed PubMed Central Google Scholar
- Nakagawa, S., Kawashima, Y., Hirose, A. & Kozuka, H. Regulation of hepatic level of fatty-acid-binding protein by hormones and clofibric acid in the rat. Biochem. J. 297, 581–584 (1994).
CAS PubMed PubMed Central Google Scholar
- Czech, M. P., Tencerova, M., Pedersen, D. J. & Aouadi, M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 56, 949–964 (2013).
CAS PubMed PubMed Central Google Scholar
- Campbell, M. C., Anderson, G. W. & Mariash, C. N. Human spot 14 glucose and thyroid hormone response: characterization and thyroid hormone response element identification. Endocrinology 144, 5242–5248 (2003).
CAS PubMed Google Scholar
- Desvergne, B., Petty, K. J. & Nikodem, V. M. Functional characterization and receptor binding studies of the malic enzyme thyroid hormone response element. J. Biol. Chem. 266, 1008–1013 (1991).
CAS PubMed Google Scholar
- Zhang, Y., Yin, L. & Hillgartner, F. B. Thyroid hormone stimulates acetyl-coA carboxylase-α transcription in hepatocytes by modulating the composition of nuclear receptor complexes bound to a thyroid hormone response element. J. Biol. Chem. 276, 974–983 (2001).
CAS PubMed Google Scholar
- Radenne, A. et al. Hepatic regulation of fatty acid synthase by insulin and T3: evidence for T3 genomic and nongenomic actions. Am. J. Physiol. Endocrinol. Metab. 295, E884–E894 (2008).
CAS PubMed Google Scholar
- Wang, Y., Viscarra, J., Kim, S. J. & Sul, H. S. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16, 678–689 (2015).
CAS PubMed PubMed Central Google Scholar
- Hashimoto, K., Matsumoto, S., Yamada, M., Satoh, T. & Mori, M. Liver X receptor-α gene expression is positively regulated by thyroid hormone. Endocrinology 148, 4667–4675 (2007).
CAS PubMed Google Scholar
- Hashimoto, K. et al. Carbohydrate response element binding protein gene expression is positively regulated by thyroid hormone. Endocrinology 150, 3417–3424 (2009).
CAS PubMed PubMed Central Google Scholar
- Hashimoto, K. et al. Mouse sterol response element binding protein-1c gene expression is negatively regulated by thyroid hormone. Endocrinology 147, 4292–4302 (2006).
CAS PubMed Google Scholar
- Gnoni, G. V. et al. 3,5,3′triiodo-L-thyronine induces SREBP-1 expression by non-genomic actions in human HEP G2 cells. J. Cell. Physiol. 227, 2388–2397 (2012).
CAS PubMed Google Scholar
- Yao, X. et al. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver. Cell Biosci. 4, 38 (2014).
PubMed PubMed Central Google Scholar
- Hashimoto, K. et al. Human stearoyl-CoA desaturase 1 (SCD-1) gene expression is negatively regulated by thyroid hormone without direct binding of thyroid hormone receptor to the gene promoter. Endocrinology 154, 537–549 (2013).
CAS PubMed Google Scholar
- Dang, A. Q., Faas, F. H. & Carter, W. J. Influence of hypo- and hyperthyroidism on rat liver glycerophospholipid metabolism. Lipids 20, 897–902 (1985).
CAS PubMed Google Scholar
- Davidson, N. O., Powell, L. M., Wallis, S. C. & Scott, J. Thyroid hormone modulates the introduction of a stop codon in rat liver apolipoprotein B messenger RNA. J. Biol. Chem. 263, 13482–13485 (1988).
CAS PubMed Google Scholar
- Abrams, J. J., Grundy, S. M. & Ginsberg, H. Metabolism of plasma triglycerides in hypothyroidism and hyperthyroidism in man. J. Lipid Res. 22, 307–322 (1981).
CAS PubMed Google Scholar
- Babenko, N. A. Long- and short-term effects of thyroxine on sphingolipid metabolism in rat liver. Med. Sci. Monit. 11, BR131–BR138 (2005).
CAS PubMed Google Scholar
- Iannucci, L. F. et al. Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet. Sci. Rep. 7, 2023 (2017).
PubMed PubMed Central Google Scholar
- Bucki, R., Gorska, M., Zendzian-Piotrowska, M. & Gorski, J. Effect of triiodothyronine on the content of phospholipids in the rat liver nuclei. J. Physiol. Pharmacol. 51, 535–540 (2000).
CAS PubMed Google Scholar
- Oppenheimer, J. H., Schwartz, H. L., Lane, J. T. & Thompson, M. P. Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J. Clin. Invest. 87, 125–132 (1991).
CAS PubMed PubMed Central Google Scholar
- Quiroga, A. D. & Lehner, R. Liver triacylglycerol lipases. Biochim. Biophys. Acta 1821, 762–769 (2012).
CAS PubMed Google Scholar
- Kihara, S., Wolle, J., Ehnholm, C., Chan, L. & Oka, K. Regulation of hepatic triglyceride lipase by thyroid hormone in HepG2 cells. J. Lipid Res. 34, 961–970 (1993).
CAS PubMed Google Scholar
- Brenta, G. et al. Atherogenic lipoproteins in subclinical hypothyroidism and their relationship with hepatic lipase activity: response to replacement treatment with levothyroxine. Thyroid 26, 365–372 (2016).
CAS PubMed Google Scholar
- Grasselli, E. et al. Triglyceride mobilization from lipid droplets sustains the anti-steatotic action of iodothyronines in cultured rat hepatocytes. Front. Physiol. 6, 418 (2015).
PubMed Google Scholar
- Sanchez, L. M., Chirino, A. J. & Bjorkman, P. Crystal structure of human ZAG, a fat-depleting factor related to MHC molecules. Science 283, 1914–1919 (1999).
CAS PubMed Google Scholar
- Simo, R. et al. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue. PLOS ONE 9, e85753 (2014).
PubMed PubMed Central Google Scholar
- Reiner, Z. et al. Lysosomal acid lipase deficiency — an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis 235, 21–30 (2014).
CAS PubMed Google Scholar
- Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).
CAS PubMed PubMed Central Google Scholar
- Cingolani, F. & Czaja, M. J. Regulation and functions of autophagic lipolysis. Trends Endocrinol. Metab. 27, 696–705 (2016).
CAS PubMed PubMed Central Google Scholar
- Sinha, R. A. et al. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest. 122, 2428–2438 (2012).This study describes the role of autophagy in thyroid-hormone-induced ketogenesis.
CAS PubMed PubMed Central Google Scholar
- Tseng, Y. H. et al. Chromosome 19 open reading frame 80 is upregulated by thyroid hormone and modulates autophagy and lipid metabolism. Autophagy 10, 20–31 (2014).
CAS PubMed Google Scholar
- Settembre, C. & Ballabio, A. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol. 24, 743–750 (2014).
CAS PubMed PubMed Central Google Scholar
- Liu, H. Y. et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284, 31484–31492 (2009).
CAS PubMed PubMed Central Google Scholar
- Takeda, T. et al. Regulation of rat hepatic peroxisomal enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme by thyroid hormone. Biochem. Biophys. Res. Commun. 185, 211–216 (1992).
CAS PubMed Google Scholar
- Just, W. W., Hartl, F. U. & Schimassek, H. Rat liver peroxisomes. I. New peroxisome population induced by thyroid hormones in the liver of male rats. Eur. J. Cell Biol. 26, 249–254 (1982).
CAS PubMed Google Scholar
- Just, W. W. & Hartl, F. U. Rat liver peroxisomes, II. Stimulation of peroxisomal fatty-acid β-oxidation by thyroid hormones. Hoppe Seylers Z. Physiol. Chem. 364, 1541–1547 (1983).
CAS PubMed Google Scholar
- Iossa, S. et al. Effect of long-term high-fat feeding on energy balance and liver oxidative activity in rats. Br. J. Nutr. 84, 377–385 (2000).
CAS PubMed Google Scholar
- Goudonnet, H. et al. Differential action of thyroid hormones and chemically related compounds on the activity of UDP-glucuronosyltransferases and cytochrome P-450 isozymes in rat liver. Biochim. Biophys. Acta 1035, 12–19 (1990).
CAS PubMed Google Scholar
- Goglia, F., Liverini, G., Lanni, A., Iossa, S. & Barletta, A. Effects of 3,5,3′-triiodothyronine (T3) on rat liver peroxisomal compartment during cold exposure. Exp. Biol. 48, 135–140 (1989).
CAS PubMed Google Scholar
- Fringes, B. & Reith, A. Time course of peroxisome biogenesis during adaptation to mild hyperthyroidism in rat liver: a morphometric/stereologic study by electron microscopy. Lab Invest. 47, 19–26 (1982).
CAS PubMed Google Scholar
- Cioffi, F., Lanni, A. & Goglia, F. Thyroid hormones, mitochondrial bioenergetics and lipid handling. Curr. Opin. Endocrinol. Diabetes Obes. 17, 402–407 (2010).
CAS PubMed Google Scholar
- Weitzel, J. M. & Iwen, K. A. Coordination of mitochondrial biogenesis by thyroid hormone. Mol. Cell Endocrinol. 342, 1–7 (2011).
CAS PubMed Google Scholar
- Wrutniak-Cabello, C., Casas, F. & Cabello, G. The direct tri-lodothyronine mitochondrial pathway: science or mythology? Thyroid 10, 965–969 (2000).
CAS PubMed Google Scholar
- Jackson-Hayes, L. et al. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Iα gene mediates the liver-specific induction by thyroid hormone. J. Biol. Chem. 278, 7964–7972 (2003).
CAS PubMed Google Scholar
- Thakran, S. et al. Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone. J. Biol. Chem. 288, 807–818 (2013).
CAS PubMed Google Scholar
- Adams, A. C. et al. Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARα-dependent manner. J. Biol. Chem. 285, 14078–14082 (2010).
CAS PubMed PubMed Central Google Scholar
- Djouadi, F., Riveau, B., Merlet-Benichou, C. & Bastin, J. Tissue-specific regulation of medium-chain acyl-CoA dehydrogenase gene by thyroid hormones in the developing rat. Biochem. J. 324, 289–294 (1997).
CAS PubMed PubMed Central Google Scholar
- Holness, M. J., Bulmer, K., Smith, N. D. & Sugden, M. C. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone. Biochem. J. 369, 687–695 (2003).
CAS PubMed PubMed Central Google Scholar
- Jekabsons, M. B., Gregoire, F. M., Schonfeld-Warden, N. A., Warden, C. H. & Horwitz, B. A. T(3) stimulates resting metabolism and UCP-2 and UCP-3 mRNA but not nonphosphorylating mitochondrial respiration in mice. Am. J. Physiol. 277, E380–E389 (1999).
CAS PubMed Google Scholar
- Sinha, R. A. et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS–AMPK–ULK1 signaling. Autophagy 11, 1341–1357 (2015).
CAS PubMed PubMed Central Google Scholar
- Lesmana, R. et al. Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle. Endocrinology 157, 23–38 (2016).
CAS PubMed Google Scholar
- Ness, G. C. Thyroid hormone. Basis for its hypocholesterolemic effect. J. Fla. Med. Assoc. 78, 383–385 (1991).
CAS PubMed Google Scholar
- Ness, G. C., Pendleton, L. C., Li, Y. C. & Chiang, J. Y. Effect of thyroid hormone on hepatic cholesterol 7α hydroxylase, LDL receptor, HMG-CoA reductase, farnesyl pyrophosphate synthetase and apolipoprotein A-I mRNA levels in hypophysectomized rats. Biochem. Biophys. Res. Commun. 172, 1150–1156 (1990).
CAS PubMed Google Scholar
- Mooradian, A. D., Wong, N. C. & Shah, G. N. Age-related changes in the responsiveness of apolipoprotein A1 to thyroid hormone. Am. J. Physiol. 271, R1602–R1607 (1996).
CAS PubMed Google Scholar
- Lopez, D., Abisambra Socarras, J. F., Bedi, M. & Ness, G. C. Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochim. Biophys. Acta 1771, 1216–1225 (2007).
CAS PubMed Google Scholar
- Lagrost, L. Regulation of cholesteryl ester transfer protein (CETP) activity: review of in vitro and in vivo studies. Biochim. Biophys. Acta 1215, 209–236 (1994).
PubMed Google Scholar
- Shin, D. J. & Osborne, T. F. Thyroid hormone regulation and cholesterol metabolism are connected through sterol regulatory element-binding protein-2 (SREBP-2). J. Biol. Chem. 278, 34114–34118 (2003).This study describes the role of SREBP2 in thyroid-hormone-regulated cholesterol metabolism.
CAS PubMed Google Scholar
- Moon, J. H. et al. Decreased expression of hepatic low-density lipoprotein receptor-related protein 1 in hypothyroidism: a novel mechanism of atherogenic dyslipidemia in hypothyroidism. Thyroid 23, 1057–1065 (2013).
CAS PubMed PubMed Central Google Scholar
- Ness, G. C. & Lopez, D. Transcriptional regulation of rat hepatic low-density lipoprotein receptor and cholesterol 7α hydroxylase by thyroid hormone. Arch. Biochem. Biophys. 323, 404–408 (1995).
CAS PubMed Google Scholar
- Goldberg, I. J. et al. Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology 153, 5143–5149 (2012).
CAS PubMed PubMed Central Google Scholar
- Bonde, Y., Plosch, T., Kuipers, F., Angelin, B. & Rudling, M. Stimulation of murine biliary cholesterol secretion by thyroid hormone is dependent on a functional ABCG5/G8 complex. Hepatology 56, 1828–1837 (2012).
CAS PubMed PubMed Central Google Scholar
- Bonde, Y. et al. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res. 55, 2408–2415 (2014).This study describes the effect of thyroid hormone on human proprotein convertase subtilisin/kexin type 9 (PCSK9).
CAS PubMed PubMed Central Google Scholar
- Yap, C. S., Sinha, R. A., Ota, S., Katsuki, M. & Yen, P. M. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells. Biochem. Biophys. Res. Commun. 440, 635–639 (2013).This study highlights the potential role of miRNA in thyroid-hormone-regulated cholesterol metabolism.
CAS PubMed Google Scholar
- Grasselli, E. et al. Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells. J. Endocrinol. 210, 59–69 (2011).
CAS PubMed Google Scholar
- Cordeiro, A., Souza, L. L., Einicker-Lamas, M. & Pazos-Moura, C. C. Non-classic thyroid hormone signalling involved in hepatic lipid metabolism. J. Endocrinol. 216, R47–R57 (2013).
CAS PubMed Google Scholar
- Cao, X., Kambe, F., Moeller, L. C., Refetoff, S. & Seo, H. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol. Endocrinol. 19, 102–112 (2005).
CAS PubMed Google Scholar
- Swierczynski, J. et al. Triiodothyronine-induced accumulations of malic enzyme, fatty acid synthase, acetyl-coenzyme A carboxylase, and their mRNAs are blocked by protein kinase inhibitors. Transcription is the affected step. J. Biol. Chem. 266, 17459–17466 (1991).
CAS PubMed Google Scholar
- Yamauchi, M. et al. Thyroid hormone activates adenosine 5′-monophosphate-activated protein kinase via intracellular calcium mobilization and activation of calcium/calmodulin-dependent protein kinase kinase-β. Mol. Endocrinol. 22, 893–903 (2008).
CAS PubMed PubMed Central Google Scholar
- Nakamura, H., Rue, P. A. & DeGroot, L. J. Thyroid hormone increases type I adenosine 3′, 5′-monophosphate-dependent protein kinase and casein kinase activities in rat liver cytosol: analysis of protein kinases by polyacrylamide disc gel electrophoresis. Endocrinology 112, 1427–1433 (1983).
CAS PubMed Google Scholar
- Coppola, M. et al. Thyroid hormone analogues and derivatives: actions in fatty liver. World J. Hepatol. 6, 114–129 (2014).
PubMed PubMed Central Google Scholar
- Lanni, A. et al. 3,5-Diiodo-L-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J. 19, 1552–1554 (2005).
CAS PubMed Google Scholar
- Grasselli, E. et al. Direct effects of iodothyronines on excess fat storage in rat hepatocytes. J. Hepatol. 54, 1230–1236 (2011).This article describes the role of 3,5-diiodothyronine in reducing hepatic fat.
CAS PubMed Google Scholar
- Cavallo, A. et al. 3,5-Diiodo-L-thyronine administration to hypothyroid rats rapidly enhances fatty acid oxidation rate and bioenergetic parameters in liver cells. PLOS ONE 8, e52328 (2013).
CAS PubMed PubMed Central Google Scholar
- Grasselli, E. et al. 3,5-Diiodo-L-thyronine modifies the lipid droplet composition in a model of hepatosteatosis. Cell Physiol. Biochem. 33, 344–356 (2014).
CAS PubMed Google Scholar
- Vergani, L. Lipid lowering effects of iodothyronines: in vivo and in vitro studies on rat liver. World J. Hepatol. 6, 169–177 (2014).
PubMed PubMed Central Google Scholar
- Gnocchi, D., Massimi, M., Alisi, A., Incerpi, S. & Bruscalupi, G. Effect of fructose and 3,5-diiodothyronine (3,5-T(2)) on lipid accumulation and insulin signalling in non-alcoholic fatty liver disease (NAFLD)-like rat primary hepatocytes. Horm. Metab. Res. 46, 333–340 (2014).
CAS PubMed Google Scholar
- Coppola, M., Cioffi, F., Moreno, M., Goglia, F. & Silvestri, E. 3,5-Diiodo-L-thyronine: a possible pharmacological agent? Curr. Drug Deliv. 13, 330–338 (2016).
CAS PubMed Google Scholar
- de Lange, P. et al. Nonthyrotoxic prevention of diet-induced insulin resistance by 3,5-diiodo-L-thyronine in rats. Diabetes 60, 2730–2739 (2011).
CAS PubMed PubMed Central Google Scholar
- Yan, F. et al. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity. J. Hepatol. 61, 1358–1364 (2014).This study describes a direct action of TSH in regulating hepatic lipid metabolism.
CAS PubMed Google Scholar
- Song, Y. et al. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J. Hepatol. 62, 1171–1179 (2015).
CAS PubMed Google Scholar
- Zhang, X. et al. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. J. Lipid Res. 56, 963–971 (2015).
CAS PubMed PubMed Central Google Scholar
- Cappola, A. R. & Ladenson, P. W. Hypothyroidism and atherosclerosis. J. Clin. Endocrinol. Metab. 88, 2438–2444 (2003).
CAS PubMed Google Scholar
- Tzotzas, T., Krassas, G. E., Konstantinidis, T. & Bougoulia, M. Changes in lipoprotein(a) levels in overt and subclinical hypothyroidism before and during treatment. Thyroid 10, 803–808 (2000).
CAS PubMed Google Scholar
- Sherman, S. I. et al. Augmented hepatic and skeletal thyromimetic effects of tiratricol in comparison with levothyroxine. J. Clin. Endocrinol. Metab. 82, 2153–2158 (1997).
CAS PubMed Google Scholar
- [No authors listed.] The coronary drug project. Findings leading to further modifications of its protocol with respect to dextrothyroxine. The coronary drug project research group. JAMA 220, 996–1008 (1972).
- Galioni, E. F. et al. Long-term effect of dried thyroid on serum-lipoprotein and serum-cholesterol levels. Lancet 272, 120–123 (1957).
CAS PubMed Google Scholar
- Baxter, J. D. & Webb, P. Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat. Rev. Drug Discov. 8, 308–320 (2009).
CAS PubMed Google Scholar
- Elbers, L. P., Kastelein, J. J. & Sjouke, B. Thyroid hormone mimetics: the past, current status and future challenges. Curr. Atheroscler Rep. 18, 14 (2016).
CAS PubMed PubMed Central Google Scholar
- Underwood, A. H. et al. A thyromimetic that decreases plasma cholesterol levels without increasing cardiac activity. Nature 324, 425–429 (1986).
CAS PubMed Google Scholar
- Tancevski, I. et al. The liver-selective thyromimetic T-0681 influences reverse cholesterol transport and atherosclerosis development in mice. PLOS ONE 5, e8722 (2010).
PubMed PubMed Central Google Scholar
- Taylor, A. H., Stephan, Z. F., Steele, R. E. & Wong, N. C. Beneficial effects of a novel thyromimetic on lipoprotein metabolism. Mol. Pharmacol. 52, 542–547 (1997).
CAS PubMed Google Scholar
- Goldman, S. et al. DITPA (3,5-Diiodothyropropionic Acid), a thyroid hormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation 119, 3093–3100 (2009).
CAS PubMed Google Scholar
- Johansson, L. et al. Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proc. Natl Acad. Sci. USA 102, 10297–10302 (2005).
CAS PubMed Google Scholar
- Tancevski, I., Demetz, E. & Eller, P. Sobetirome: a selective thyromimetic for the treatment of dyslipidemia. Recent Pat. Cardiovasc. Drug Discov. 6, 16–19 (2011).
CAS PubMed Google Scholar
- Kannisto, K. et al. The thyroid receptor β modulator GC-1 reduces atherosclerosis in ApoE deficient mice. Atherosclerosis 237, 544–554 (2014).
CAS PubMed Google Scholar
- Grover, G. J., Mellstrom, K. & Malm, J. Development of the thyroid hormone receptor β-subtype agonist KB-141: a strategy for body weight reduction and lipid lowering with minimal cardiac side effects. Cardiovasc. Drug Rev. 23, 133–148 (2005).
CAS PubMed Google Scholar
- Ladenson, P. W. et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N. Engl. J. Med. 362, 906–916 (2010).This study describes the use of a thyroid hormone analogue in treating dyslipidaemia in humans.
CAS PubMed Google Scholar
- Kelly, M. J. et al. Discovery of 2-[3,5-dichloro-4-(5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yloxy)phenyl]-3,5-dioxo-2,3,4,5-tetrahydro[1,2,4]triazine-6-carbonitrile (MGL-3196), a highly selective thyroid hormone receptor β agonist in clinical trials for the treatment of dyslipidemia. J. Med. Chem. 57, 3912–3923 (2014).
CAS PubMed Google Scholar
- Ito, B. R. et al. Thyroid hormone β receptor activation has additive cholesterol lowering activity in combination with atorvastatin in rabbits, dogs and monkeys. Br. J. Pharmacol. 156, 454–465 (2009).
CAS PubMed PubMed Central Google Scholar
- Myers, C . Metabasis therapeutics announces the publication of pre-clinical findings on MB07811, its product candidate. FierceBiotech https://www.fiercebiotech.com/biotech/metabasis-therapeutics-announces-publication-of-pre-clinical-findings-on-mb07811-its (2009).
- US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT00879112 (2018).
- Trost, S. U. et al. The thyroid hormone receptor-β-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology 141, 3057–3064 (2000).
CAS PubMed Google Scholar
- Bryzgalova, G. et al. Anti-obesity, anti-diabetic, and lipid lowering effects of the thyroid receptor β subtype selective agonist KB-141. J. Steroid Biochem. Mol. Biol. 111, 262–267 (2008).
CAS PubMed Google Scholar
- Ahmed, M. Non-alcoholic fatty liver disease in 2015. World J. Hepatol. 7, 1450–1459 (2015).
PubMed PubMed Central Google Scholar
- Adams, L. A., Anstee, Q. M., Tilg, H. & Targher, G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 66, 1138–1153 (2017).
PubMed Google Scholar
- Caligiuri, A., Gentilini, A. & Marra, F. Molecular pathogenesis of NASH. Int. J. Mol. Sci. 17, 1575 (2016).
PubMed Central Google Scholar
- Pais, R. et al. NAFLD and liver transplantation: current burden and expected challenges. J. Hepatol. 65, 1245–1257 (2016).
PubMed PubMed Central Google Scholar
- Eshraghian, A. & Hamidian Jahromi, A. Non-alcoholic fatty liver disease and thyroid dysfunction: a systematic review. World J. Gastroenterol. 20, 8102–8109 (2014).
PubMed PubMed Central Google Scholar
- Ludwig, U. et al. Subclinical and clinical hypothyroidism and non-alcoholic fatty liver disease: a cross-sectional study of a random population sample aged 18 to 65 years. BMC Endocr. Disord. 15, 41 (2015).
PubMed PubMed Central Google Scholar
- Xu, C., Xu, L., Yu, C., Miao, M. & Li, Y. Association between thyroid function and nonalcoholic fatty liver disease in euthyroid elderly Chinese. Clin. Endocrinol. 75, 240–246 (2011).
CAS Google Scholar
- Chung, G. E. et al. Non-alcoholic fatty liver disease across the spectrum of hypothyroidism. J. Hepatol. 57, 150–156 (2012).
CAS PubMed Google Scholar
- Bano, A. et al. Thyroid function and the risk of nonalcoholic fatty liver disease: The Rotterdam Study. J. Clin. Endocrinol. Metab. 101, 3204–3211 (2016).
CAS PubMed Google Scholar
- Torun, E., Ozgen, I. T., Gokce, S., Aydin, S. & Cesur, Y. Thyroid hormone levels in obese children and adolescents with non-alcoholic fatty liver disease. J. Clin. Res. Pediatr. Endocrinol. 6, 34–39 (2014).
PubMed PubMed Central Google Scholar
- Gokmen, F. Y. et al. FT3/FT4 ratio predicts non-alcoholic fatty liver disease independent of metabolic parameters in patients with euthyroidism and hypothyroidism. Clin. (Sao Paulo) 71, 221–225 (2016).
Google Scholar
- Tao, Y., Gu, H., Wu, J. & Sui, J. Thyroid function is associated with non-alcoholic fatty liver disease in euthyroid subjects. Endocr. Res. 40, 74–78 (2015).
PubMed Google Scholar
- Sinha, R. A. & Yen, P. M. Thyroid hormone-mediated autophagy and mitochondrial turnover in NAFLD. Cell Biosci. 6, 46 (2016).
PubMed PubMed Central Google Scholar
- Sinha, R. A., Singh, B. K. & Yen, P. M. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol. Metab. 25, 538–545 (2014).
CAS PubMed Google Scholar
- Pihlajamaki, J. et al. Thyroid hormone-related regulation of gene expression in human fatty liver. J. Clin. Endocrinol. Metab. 94, 3521–3529 (2009).This paper presents an interesting study describing defective hepatic thyroid hormone signalling in human NAFLD.
CAS PubMed PubMed Central Google Scholar
- Li, Q. L., Yamamoto, N., Inoue, A. & Morisawa, S. Fatty acyl-CoAs are potent inhibitors of the nuclear thyroid hormone receptor in vitro. J. Biochem. 107, 699–702 (1990).
CAS PubMed Google Scholar
- Bohinc, B. N. et al. Repair-related activation of hedgehog signaling in stromal cells promotes intrahepatic hypothyroidism. Endocrinology 155, 4591–4601 (2014).
PubMed PubMed Central Google Scholar
- Finan, B. et al. Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 167, 843–857 (2016).This study describes a novel approach of using chemical hybridization of thyroid hormone and glucagon for the treatment of metabolic diseases.
CAS PubMed Google Scholar
- Perra, A. et al. Thyroid hormone (T3) and TRβ agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB J. 22, 2981–2989 (2008).
CAS PubMed Google Scholar
- Refetoff, S., Weiss, R. E. & Usala, S. J. The syndromes of resistance to thyroid hormone. Endocr. Rev. 14, 348–399 (1993).
CAS PubMed Google Scholar
- Chng, C. L. et al. Physiological and metabolic changes during the transition from hyperthyroidism to euthyroidism in Graves' disease. Thyroid 26, 1422–1430 (2016).
CAS PubMed Google Scholar
- Vatner, D. F. et al. Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. Am. J. Physiol. Endocrinol. Metab. 305, E89–E100 (2013).
CAS PubMed PubMed Central Google Scholar
- Lammel Lindemann, J. & Webb, P. Sobetirome: the past, present and questions about the future. Expert Opin. Ther. Targets 20, 145–149 (2016).
CAS PubMed Google Scholar
- Liangpunsakul, S. & Chalasani, N. Is hypothyroidism a risk factor for non-alcoholic steatohepatitis? J. Clin. Gastroenterol. 37, 340–343 (2003).
PubMed Google Scholar
- Pagadala, M. R. et al. Prevalence of hypothyroidism in nonalcoholic fatty liver disease. Dig. Dis. Sci. 57, 528–534 (2012).
PubMed Google Scholar
- Kim, D. et al. Subclinical hypothyroidism and low-normal thyroid function are associated with nonalcoholic steatohepatitis and fibrosis. Clin. Gastroenterol. Hepatol. 16, 123–131 (2018).
CAS PubMed Google Scholar
- Hassan, M. M. et al. Association between hypothyroidism and hepatocellular carcinoma: a case-control study in the United States. Hepatology 49, 1563–1570 (2009).
PubMed PubMed Central Google Scholar
- Frau, C. et al. Local hypothyroidism favors the progression of preneoplastic lesions to hepatocellular carcinoma in rats. Hepatology 61, 249–259 (2015).
CAS PubMed Google Scholar
- Chan, I. H. & Privalsky, M. L. Thyroid hormone receptors mutated in liver cancer function as distorted antimorphs. Oncogene 25, 3576–3588 (2006).
CAS PubMed PubMed Central Google Scholar
- Yen, C. C. et al. Mediation of the inhibitory effect of thyroid hormone on proliferation of hepatoma cells by transforming growth factor-β. J. Mol. Endocrinol. 36, 9–21 (2006).
CAS PubMed Google Scholar