Blood vessels and nerves: common signals, pathways and diseases (original) (raw)
Temple, S. The development of neural stem cells. Nature414, 112–117 (2001). An overview of the molecular and cellular mechanisms of neural stem cells. ArticleCASPubMed Google Scholar
Panchision, D. M. & McKay, R. D. The control of neural stem cells by morphogenic signals. Curr. Opin. Genet. Dev.12, 478–487 (2002). CASPubMed Google Scholar
Osterfield, M., Kirschner, M. W. & Flanagan, J. G. Graded positional information. Interpretation for both fate and guidance. Cell113, 425–428 (2003). A recent overview that highlights how morphogens control neural development. CASPubMed Google Scholar
Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev.16, 846–858 (2002). CASPubMedPubMed Central Google Scholar
Gaiano, N. & Fishell, G. The role of notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci.25, 471–490 (2002). CASPubMed Google Scholar
Patten, I. & Placzek, M. The role of Sonic hedgehog in neural tube patterning. Cell Mol. Life Sci.57, 1695–1708 (2000). CASPubMed Google Scholar
Rowitch, D. H., Lu, Q. R., Kessaris, N. & Richardson, W. D. An 'oligarchy' rules neural development. Trends Neurosci.25, 417–422 (2002). CASPubMed Google Scholar
Mehler, M. F. Mechanisms regulating lineage diversity during mammalian cerebral cortical neurogenesis and gliogenesis. Results Probl. Cell Differ.39, 27–52 (2002). CASPubMed Google Scholar
Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature401, 670–677 (1999). This paper documents how bHLH-repressors affect both neurogenesis and angiogenesis. CASPubMed Google Scholar
Wang, S., Sdrulla, A., Johnson, J. E., Yokota, Y. & Barres, B. A. A role for the helix–loop–helix protein Id2 in the control of oligodendrocyte development. Neuron29, 603–614 (2001). CASPubMed Google Scholar
Dupin, E., Real, C. & Ledouarin, N. The neural crest stem cells: control of neural crest cell fate and plasticity by endothelin-3. An. Acad. Bras. Cienc.73, 533–545 (2001). CASPubMed Google Scholar
Knecht, A. K. & Bronner-Fraser, M. Induction of the neural crest: a multigene process. Nature Rev. Genet.3, 453–461 (2002). CASPubMed Google Scholar
Etchevers, H. C., Couly, G. & Le Douarin, N. M. Morphogenesis of the branchial vascular sector. Trends Cardiovasc. Med.12, 299–304 (2002). A recent overview that illustrates the role of neural crest cells in vascular development. PubMed Google Scholar
Aybar, M. J. & Mayor, R. Early induction of neural crest cells: lessons learned from frog, fish and chick. Curr. Opin. Genet. Dev.12, 452–458 (2002). CASPubMed Google Scholar
Soriano, P. The PDGFα receptor is required for neural crest cell development and for normal patterning of the somites. Development124, 2691–2700 (1997). CASPubMed Google Scholar
Maschhoff, K. L. & Baldwin, H. S. Molecular determinants of neural crest migration. Am. J. Med. Genet.97, 280–288 (2000). Overview of the genetics of neural crest cell migration. CASPubMed Google Scholar
Kawasaki, T. et al. A requirement for neuropilin-1 in embryonic vessel formation. Development126, 4895–4902 (1999). CASPubMed Google Scholar
Feiner, L. et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development128, 3061–3070 (2001). CASPubMed Google Scholar
Kurihara, Y. et al. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J. Clin. Invest.96, 293–300 (1995). CASPubMedPubMed Central Google Scholar
Williams, D. E. et al. Identification of a ligand for the c-kit proto-oncogene. Cell63, 167–174 (1990). CASPubMed Google Scholar
Shah, N. M., Groves, A. K. & Anderson, D. J. Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell85, 331–343 (1996). CASPubMed Google Scholar
Mikkola, H. K. & Orkin, S. H. The search for the hemangioblast. J. Hematother. Stem Cell Res.11, 9–17 (2002). PubMed Google Scholar
Carmeliet, P. Angiogenesis in health and disease. Nature Med.9, 653–660 (2003). A recent overview of the molecular and cellular mechanisms of vessel growth in health and disease. CASPubMed Google Scholar
Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nature Med.9, 661–668 (2003). CASPubMed Google Scholar
Rovainen, C. M. Labeling of developing vascular endothelium after injections of rhodamine-dextran into blastomeres of Xenopus laevis. J. Exp. Zool.259, 209–221 (1991). CASPubMed Google Scholar
Childs, S., Chen, J. N., Garrity, D. M. & Fishman, M. C. Patterning of angiogenesis in the zebrafish embryo. Development129, 973–982 (2002). CASPubMed Google Scholar
Liao, W., Ho, C. Y., Yan, Y. L., Postlethwait, J. & Stainier, D. Y. Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. Development127, 4303–4313 (2000). CASPubMed Google Scholar
Brown, L. A. et al. Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mech. Dev.90, 237–252 (2000). CASPubMed Google Scholar
Carmeliet, P. Controlling the cellular brakes. Nature401, 657–658 (1999). CASPubMed Google Scholar
Yamashita, J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature408, 92–96 (2000). CASPubMed Google Scholar
Abbot, N. J. Glial–endothelial communication in physiology and pathology. J. Neurochem.85 (Suppl.) 2 (2003). Google Scholar
LeCouter, J., Lin, R. & Ferrara, N. Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nature Med.8, 913–917 (2002). CASPubMed Google Scholar
Ruoslahti, E. Specialization of tumour vasculature. Nature Rev. Cancer2, 83–90 (2002). Google Scholar
Zhong, T. P., Childs, S., Leu, J. P. & Fishman, M. C. Gridlock signalling pathway fashions the first embryonic artery. Nature414, 216–220 (2001). CASPubMed Google Scholar
Sumoy, L., Keasey, J. B., Dittman, T. D. & Kimelman, D. A role for notochord in axial vascular development revealed by analysis of phenotype and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos. Mech. Dev.63, 15–27 (1997). CASPubMed Google Scholar
Fouquet, B., Weinstein, B. M., Serluca, F. C. & Fishman, M. C. Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev. Biol.183, 37–48 (1997). CASPubMed Google Scholar
Hall, C. J., Flores, M. V., Davidson, A. J., Crosier, K. E. & Crosier, P. S. Radar is required for the establishment of vascular integrity in the zebrafish. Dev. Biol.251, 105–117 (2002). CASPubMed Google Scholar
Damert, A., Miquerol, L., Gertsenstein, M., Risau, W. & Nagy, A. Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development129, 1881–1892 (2002). CASPubMed Google Scholar
Ferrara, N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol.29, 10–14 (2002). CASPubMed Google Scholar
Baron, M. Induction of embryonic hematopoietic and endothelial stem/progenitor cells by hedgehog-mediated signals. Differentiation68, 175–185 (2001). CASPubMed Google Scholar
Dyer, M. A., Farrington, S. M., Mohn, D., Munday, J. R. & Baron, M. H. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development128, 1717–1730 (2001). CASPubMed Google Scholar
Moyon, D., Pardanaud, L., Yuan, L., Breant, C. & Eichmann, A. Plasticity of endothelial cells during arterial–venous differentiation in the avian embryo. Development128, 3359–3370 (2001). CASPubMed Google Scholar
Othman-Hassan, K. et al. Arterial identity of endothelial cells is controlled by local cues. Dev. Biol.237, 398–409 (2001). CASPubMed Google Scholar
Lawson, N. D., Vogel, A. M. & Weinstein, B. M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell3, 127–136 (2002). This paper explains the genetic pathways that determine arterial endothelial cell fate. CASPubMed Google Scholar
Lawson, N. D. & Weinstein, B. M. Arteries and veins: making a difference with zebrafish. Nature Rev. Genet.3, 674–682 (2002). CASPubMed Google Scholar
Chen, J. N. et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development123, 293–302 (1996). CASPubMed Google Scholar
Mukouyama, Y. S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D. J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell109, 693–705 (2002). This study provides genetic insights into how arteries are guided by nerves. CASPubMed Google Scholar
Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest.109, 327–336 (2002). CASPubMedPubMed Central Google Scholar
Visconti, R. P., Richardson, C. D. & Sato, T. N. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc. Natl Acad. Sci. USA99, 8219–8224 (2002). CASPubMedPubMed Central Google Scholar
Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell4, 67–82 (2003). CASPubMed Google Scholar
Lawson, N. D. et al. Notch signaling is required for arterial–venous differentiation during embryonic vascular development. Development128, 3675–3683 (2001). CASPubMed Google Scholar
Zhong, T. P., Rosenberg, M., Mohideen, M. A., Weinstein, B. & Fishman, M. C. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science287, 1820–1824 (2000). This paper reports how bHLH proteins determine arterial cell fate. CASPubMed Google Scholar
Lawson, N. D., Mugford, J. W., Diamond, B. A. & Weinstein, B. M. Phospholipase C γ-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev.17, 1346–1351 (2003). CASPubMedPubMed Central Google Scholar
Kalimo, H., Ruchoux, M. M., Viitanen, M. & Kalaria, R. N. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol.12, 371–384 (2002). CASPubMed Google Scholar
Iso, T., Hamamori, Y. & Kedes, L. Notch signaling in vascular development. Arterioscler. Thromb. Vasc. Biol.23, 543–553 (2003). CASPubMed Google Scholar
Taylor, K. L., Henderson, A. M. & Hughes, C. C. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc. Res.64, 372–383 (2002). CASPubMed Google Scholar
Compernolle, V. et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nature Med.8, 702–710 (2002). CASPubMed Google Scholar
Gerber, H. P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med.5, 623–628 (1999). CASPubMed Google Scholar
Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest.111, 707–716 (2003). CASPubMedPubMed Central Google Scholar
LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science299, 890–893 (2003). CASPubMed Google Scholar
Bahary, N. & Zon, L. I. Endothelium — chicken soup for the endoderm. Science294, 530–531 (2001). CASPubMed Google Scholar
Stainier, D. Y. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development123, 285–292 (1996). CASPubMed Google Scholar
Zerlin, M. & Goldman, J. E. Interactions between glial progenitors and blood vessels during early postnatal corticogenesis: blood vessel contact represents an early stage of astrocyte differentiation. J. Comp. Neurol.387, 537–546 (1997). CASPubMed Google Scholar
Huxlin, K. R., Sefton, A. J. & Furby, J. H. The origin and development of retinal astrocytes in the mouse. J. Neurocytol.21, 530–544 (1992). CASPubMed Google Scholar
Louissaint, A., Rao, S., Leventhal, C. & Goldman, S. A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron34, 945–960 (2002). This report documents how VEGF-driven angiogenesis stimulates BDNF-driven neurogenesis. CASPubMed Google Scholar
Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol.425, 479–494 (2000). This study highlights the link between angiogenesis and neurogenesis. CASPubMed Google Scholar
Mi, H., Haeberle, H. & Barres, B. A. Induction of astrocyte differentiation by endothelial cells. J. Neurosci.21, 1538–1547 (2001). CASPubMedPubMed Central Google Scholar
Yang, K. & Cepko, C. L. Flk-1, a receptor for vascular endothelial growth factor (VEGF) is expressed by retinal progenitor cells. J. Neurosci.16, 6089–6099 (1996). CASPubMedPubMed Central Google Scholar
Yourey, P. A., Gohari, S., Su, J. L. & Alderson, R. F. Vascular endothelial cell growth factors promote the in vitro development of rat photoreceptor cells. J. Neurosci.20, 6781–6788 (2000). CASPubMedPubMed Central Google Scholar
Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl Acad. Sci. USA99, 11946–11950 (2002). This study documents how the prototype angiogenic factor VEGF affects neurogenesis. CASPubMedPubMed Central Google Scholar
Zhu, Y., Jin, K., Mao, X. O. & Greenberg, D. A. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J.17, 186–193 (2003). CASPubMed Google Scholar
Bagnard, D. et al. Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J. Neurosci.21, 3332–3341 (2001). CASPubMedPubMed Central Google Scholar
Miao, H. Q. et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell Biol.146, 233–242 (1999). This paper illustrates how the neurorepellent Sema3A and VEGF antagonistically affect endothelial cells through binding neuropilin-1. CASPubMedPubMed Central Google Scholar
Leventhal, C., Rafii, S., Rafii, D., Shahar, A. & Goldman, S. A. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol. Cell Neurosci.13, 450–464 (1999). CASPubMed Google Scholar
Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A. & Greenough, W. T. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl Acad. Sci. USA87, 5568–5572 (1990). CASPubMedPubMed Central Google Scholar
Kokaia, Z. & Lindvall, O. Neurogenesis after ischaemic brain insults. Curr. Opin Neurobiol.13, 127–132 (2003). CASPubMed Google Scholar
Monje, M. L., Mizumatsu, S., Fike, J. R. & Palmer, T. D. Irradiation induces neural precursor-cell dysfunction. Nature Med.8, 955–962 (2002). CASPubMed Google Scholar
Cooke, J. E. & Moens, C. B. Boundary formation in the hindbrain: Eph only it were simple. Trends Neurosci.25, 260–267 (2002). A review of the role of ephrins in boundary formation in the brain. CASPubMed Google Scholar
Tepass, U., Godt, D. & Winklbauer, R. Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev.12, 572–582 (2002). CASPubMed Google Scholar
Krull, C. E. Segmental organization of neural crest migration. Mech. Dev.105, 37–45 (2001). CASPubMed Google Scholar
Mellitzer, G., Xu, Q. & Wilkinson, D. G. Eph receptors and ephrins restrict cell intermingling and communication. Nature400, 77–81 (1999). CASPubMed Google Scholar
Coulthard, M. G. et al. The role of the Eph–ephrin signalling system in the regulation of developmental patterning. Int. J. Dev. Biol.46, 375–384 (2002). CASPubMed Google Scholar
Cooke, J. et al. Eph signalling functions downstream of Val to regulate cell sorting and boundary formation in the caudal hindbrain. Development128, 571–580 (2001). CASPubMed Google Scholar
Xu, Q., Alldus, G., Holder, N. & Wilkinson, D. G. Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development121, 4005–4016 (1995). CASPubMed Google Scholar
Holmberg, J. & Frisen, J. Ephrins are not only unattractive. Trends Neurosci.25, 239–243 (2002). CASPubMed Google Scholar
Adams, R. H. & Klein, R. Eph receptors and ephrin ligands: essential mediators of vascular development. Trends Cardiovasc. Med.10, 183–188 (2000). An overview of the role of ephrins in vascular development. CASPubMed Google Scholar
Cheng, N., Brantley, D. M. & Chen, J. The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev.13, 75–85 (2002). CASPubMed Google Scholar
Gale, N. W. et al. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev. Biol.230, 151–160 (2001). CASPubMed Google Scholar
Shin, D. et al. Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev. Biol.230, 139–150 (2001). CASPubMed Google Scholar
Adams, R. H. et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev.13, 295–306 (1999). CASPubMedPubMed Central Google Scholar
Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell93, 741–753 (1998). A seminal study that documents the role of ephrins in vascular development. CASPubMed Google Scholar
Hirano, S., Suzuki, S. T. & Redies, C. M. The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front. Biosci.8, 306–355 (2003). Google Scholar
Dejana, E., Spagnuolo, R. & Bazzoni, G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb. Haemost.86, 308–315 (2001). CASPubMed Google Scholar
Inoue, T. et al. Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development. Development128, 561–569 (2001). CASPubMed Google Scholar
Guthrie, S. Neuronal development: sorting out motor neurons. Curr. Biol.12, 488–490 (2002). This overview highlights how cadherins are involved in sorting neurons. Google Scholar
Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell98, 147–157 (1999). CASPubMed Google Scholar
Wolburg, H. & Lippoldt, A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul. Pharmacol.38, 323–337 (2002). CASPubMed Google Scholar
Gerhardt, H., Wolburg, H. & Redies, C. N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev. Dyn.218, 472–479 (2000). CASPubMed Google Scholar
Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol.248, 307–318 (2002). CASPubMed Google Scholar
Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell. Biol.161, 1163–1177 (2003). CASPubMedPubMed Central Google Scholar
Dickson, B. J. Molecular mechanisms of axon guidance. Science298, 1959–1964 (2002). A recent overview of the cellular and molecular mechanisms of axon guidance. CASPubMed Google Scholar
Yamamoto, N., Tamada, A. & Murakami, F. Wiring of the brain by a range of guidance cues. Prog. Neurobiol.68, 393–407 (2002). PubMed Google Scholar
Cooper, H. M. Axon guidance receptors direct growth cone pathfinding: rivalry at the leading edge. Int. J. Dev. Biol.46, 621–631 (2002). CASPubMed Google Scholar
McFarlane, S. Attraction vs. repulsion: the growth cone decides. Biochem. Cell Biol.78, 563–568 (2000). CASPubMed Google Scholar
Nguyen-Ba-Charvet, K. T. & Chedotal, A. Role of Slit proteins in the vertebrate brain. J. Physiol. Paris96, 91–98 (2002). CASPubMed Google Scholar
Guthrie, S. Axon guidance: Robos make the rules. Curr. Biol.11, 300–303 (2001). A review of the genetic pathways, in particular of the Robo receptors, which determine neuronal route finding. Google Scholar
Wong, K., Park, H. T., Wu, J. Y. & Rao, Y. Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr. Opin. Genet. Dev.12, 583–591 (2002). CASPubMed Google Scholar
Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the robo receptor in Drosophila. Cell96, 785–794 (1999). CASPubMed Google Scholar
Fricke, C., Lee, J. S., Geiger-Rudolph, S., Bonhoeffer, F. & Chien, C. B. astray, a zebrafish roundabout homolog required for retinal axon guidance. Science292, 507–510 (2001). CASPubMed Google Scholar
Plump, A. S. et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron33, 219–232 (2002). CASPubMed Google Scholar
Manitt, C. & Kennedy, T. E. Where the rubber meets the road: netrin expression and function in developing and adult nervous systems. Prog. Brain Res.137, 425–442 (2002). CASPubMed Google Scholar
Giger, R. J. & Kolodkin, A. L. Silencing the siren: guidance cue hierarchies at the CNS midline. Cell105, 1–4 (2001). CASPubMed Google Scholar
Knoll, B. & Drescher, U. Ephrin-As as receptors in topographic projections. Trends Neurosci.25, 145–149 (2002). CASPubMed Google Scholar
Feldheim, D. A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron25, 563–574 (2000). CASPubMed Google Scholar
McLaughlin, T., Hindges, R. & O'Leary, D. D. Regulation of axial patterning of the retina and its topographic mapping in the brain. Curr. Opin. Neurobiol.13, 57–69 (2003). CASPubMed Google Scholar
Murai, K. K., Nguyen, L. N., Irie, F., Yamaguchi, Y. & Pasquale, E. B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nature Neurosci.6, 153–160 (2003). CASPubMed Google Scholar
Adams, R. H. et al. The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell104, 57–69 (2001). CASPubMed Google Scholar
Bagri, A. & Tessier-Lavigne, M. Neuropilins as semaphorin receptors: in vivo functions in neuronal cell migration and axon guidance. Adv. Exp. Med. Biol.515, 13–31 (2002). An overview of the role of semaphorins and their neuropilin receptors in neurobiology. CASPubMed Google Scholar
Pasterkamp, R. J. & Kolodkin, A. L. Semaphorin junction: making tracks toward neural connectivity. Curr. Opin. Neurobiol.13, 79–89 (2003). CASPubMed Google Scholar
Puschel, A. W. The function of neuropilin/plexin complexes. Adv. Exp. Med. Biol.515, 71–80 (2002). PubMed Google Scholar
Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science281, 1515–1518 (1998). CASPubMed Google Scholar
Neufeld, G. et al. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med.12, 13–19 (2002). CASPubMed Google Scholar
Isogai, S., Horiguchi, M. & Weinstein, B. M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol.230, 278–301 (2001). CASPubMed Google Scholar
Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Med.9, 677–684 (2003). CASPubMed Google Scholar
Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med.5, 495–502 (1999). CASPubMed Google Scholar
Mattot, V. et al. Loss of the VEGF(164) and VEGF(188) isoforms impairs postnatal glomerular angiogenesis and renal arteriogenesis in mice. J. Am. Soc. Nephrol.13, 1548–1560 (2002). CASPubMed Google Scholar
Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet.28, 131–138 (2001). A study that reports a neurotrophic and vascular role for the prototype angiogenic factor VEGF in motor neuron degeneration. CASPubMed Google Scholar
Gerber, H. P. et al. VEGF is required for growth and survival in neonatal mice. Development126, 1149–1159 (1999). CASPubMed Google Scholar
Egginton, S., Zhou, A. L., Brown, M. D. & Hudlicka, O. Unorthodox angiogenesis in skeletal muscle. Cardiovasc. Res.49, 634–646 (2001). CASPubMed Google Scholar
Djonov, V. G., Kurz, H. & Burri, P. H. Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev. Dyn.224, 391–402 (2002). PubMed Google Scholar
Helbling, P. M., Saulnier, D. M. & Brandli, A. W. The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis. Development127, 269–278 (2000). CASPubMed Google Scholar
Gerety, S. S. & Anderson, D. J. Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development129, 1397–1410 (2002). CASPubMed Google Scholar
Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev.16, 2684–2698 (2002). A genetic study that documents the role of VEGF isoforms in vessel patterning and branching. CASPubMedPubMed Central Google Scholar
van der Zwaag, B. et al. PLEXIN-D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis. Dev. Dyn.225, 336–343 (2002). CASPubMed Google Scholar
Shoji, W., Isogai, S., Sato-Maeda, M., Obinata, M. & Kuwada, J. Y. Semaphorin3a1 regulates angioblast migration and vascular development in zebrafish embryos. Development130, 3227–3236 (2003). CASPubMed Google Scholar
Huminiecki, L., Gorn, M., Suchting, S., Poulsom, R. & Bicknell, R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics79, 547–552 (2002). CASPubMed Google Scholar
Stalmans, I. et al. VEGF: a modifier of the del22q11 (DiGeorge) syndrome? Nature Med.9, 173–182 (2003). A study that uses genetics in mice, zebrafish and humans to document a role of VEGF-isoforms in the patterning of the great thoracic arteries. CASPubMed Google Scholar
Carmeliet, P. Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ. Res.87, 176–178 (2000). CASPubMed Google Scholar
Hilgers, K. F., Norwood, V. F. & Gomez, R. A. Angiotensin's role in renal development. Semin. Nephrol.17, 492–501 (1997). CASPubMed Google Scholar
Lee, S. H., Schloss, D. J., Jarvis, L., Krasnow, M. A. & Swain, J. L. Inhibition of angiogenesis by a mouse sprouty protein. J. Biol. Chem.276, 4128–4133 (2001). CASPubMed Google Scholar
Honma, Y. et al. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron35, 267–282 (2002). This study provides genetic evidence for how vessel-produced artemin directs nerve patterning. CASPubMed Google Scholar
Bates, D. et al. Neurovascular congruence results from a shared patterning mechanism that utilizes semaphorin3A and neuropilin-1. Dev. Biol.255, 77–98 (2003). CASPubMed Google Scholar
Borisov, A. B., Huang, S. K. & Carlson, B. M. Remodeling of the vascular bed and progressive loss of capillaries in denervated skeletal muscle. Anat. Rec.258, 292–304 (2000). CASPubMed Google Scholar
Zukowska, Z., Grant, D. S. & Lee, E. W. Neuropeptide Y: a novel mechanism for ischemic angiogenesis. Trends Cardiovasc. Med.13, 86–92 (2003). CASPubMed Google Scholar
Teunis, M. A. et al. Reduced tumor growth, experimental metastasis formation, and angiogenesis in rats with a hyperreactive dopaminergic system. FASEB J.16, 1465–1467 (2002). CASPubMed Google Scholar
Basu, S. et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nature Med.7, 569–574 (2001). CASPubMed Google Scholar
Heeschen, C. et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Med.7, 833–839 (2001). CASPubMed Google Scholar
Donovan, M. J. et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development127, 4531–4540 (2000). CASPubMed Google Scholar
Calza, L., Giardino, L., Giuliani, A., Aloe, L. & Levi-Montalcini, R. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc. Natl Acad. Sci. USA98, 4160–4165 (2001). CASPubMedPubMed Central Google Scholar
Carmichael, S. T. Plasticity of cortical projections after stroke. Neuroscientist9, 64–75 (2003). PubMed Google Scholar
Carmeliet, P. Creating unique blood vessels. Nature412, 868–869 (2001). CASPubMed Google Scholar
Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Rev. Neurosci.2, 806–819 (2001). CAS Google Scholar
Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genet.34, 383–394 (2003). CASPubMed Google Scholar
Poltorak, Z., Cohen, T. & Neufeld, G. The VEGF splice variants: properties, receptors, and usage for the treatment of ischemic diseases. Herz25, 126–129 (2000). CASPubMed Google Scholar
Kalaria, R. N. Small vessel disease and Alzheimer's dementia: pathological considerations. Cerebrovasc. Disc.13 (Suppl.), 48–52 (2002). An overview that highlights the role of blood vessels in neurodegenerative Alzheimer Disease. CAS Google Scholar
Wick, A. et al. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J. Neurosci.22, 6401–6407 (2002). CASPubMedPubMed Central Google Scholar
Isner, J. M., Ropper, A. & Hirst, K. VEGF gene transfer for diabetic neuropathy. Hum. Gene Ther.12, 1593–1594 (2001). CASPubMed Google Scholar
Schratzberger, P. et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J. Clin. Invest.107, 1083–1092 (2001). CASPubMedPubMed Central Google Scholar
Sondell, M., Sundler, F. & Kanje, M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur. J. Neurosci.12, 4243–4254 (2000). CASPubMed Google Scholar
Hobson, M. I., Green, C. J. & Terenghi, G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J. Anat.197, 591–605 (2000). CASPubMedPubMed Central Google Scholar