The cutting-edge of mammalian development; how the embryo makes teeth (original) (raw)
Haworth, K. et al. Regionalisation of the early head ectoderm is regulated by endoderm and prepatterns the orofacial epithelium. Development (in the press).
Bei, M. & Maas, R. FGFs and BMP4 induce both _Msx1_-independent and _Msx1_-dependent signalling pathways in early tooth development. Development125, 4325–4333 (1998). CASPubMed Google Scholar
Tucker, A. S., Matthews, K. L. & Sharpe, P. T. Transformation of tooth type induced by inhibition of BMP signalling. Science282, 1136–1138 (1998). An incisor was transformed into a molar by experimental manipulation of gene expression, providing strong support for the homeobox code theory. CASPubMed Google Scholar
Trumpp, A., Depew, M. J., Rubinstein, J. L. R., Bishop, J. M. & Martin, G. R. Cre-mediated gene inactivation demonstrates that Fgf8 is required for cell survival and patterning of the first branchial arch. Genes Dev.13, 3136–3148 (1999). CASPubMedPubMed Central Google Scholar
Ferguson, C. A., Tucker, A. S. & Sharpe, P. T. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. Development127, 403–412 (2000). CASPubMed Google Scholar
Thomas, B. L. et al. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development124, 4811–4818 (1997). CASPubMed Google Scholar
Wilson, J. & Tucker, A. S. Fgf and Bmp signals repress the expression of Bapx1 in the mandibular mesenchyme and control the position of the developing jaw joint. Dev. Biol.266, 138–150 (2004). CASPubMed Google Scholar
Tucker, A. S., Watson, R. P., Lettice, L. A., Yamada, G. & Hill., B. Bapx1 regulates patterning in the middle ear: altered regulatory role in the transition from the proximal jaw during vertebrate evolution. Development131, 1235–1245 (2004). CASPubMed Google Scholar
Grigoriou, M., Tucker, A. S., Sharpe, P. T. & Pachnis, V. Expression of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain genes, suggests a role in mammalian head development. Development125, 2063–2074 (1998). CASPubMed Google Scholar
Tucker, A. S., Yamada, G., Grigoriou, M., Pachnis, V. & Sharpe, P. T. Fgf-8 determines rostral–caudal polarity in the first branchial arch. Development126, 51–61 (1999). CASPubMed Google Scholar
Rivera-Pérez, J. A., Mallo, M., Gendron-Maguire, M., Gridley, T. & Behringer, R. R. Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development121, 3005–3012 (1995). PubMed Google Scholar
Yamada, G. et al. Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development121, 2917–2922 (1995). CASPubMed Google Scholar
Thomas, B. T. & Sharpe, P. T. Patterning of the murine dentition by homeobox genes. Euro. J. Oral Sci.106, 48–54 (1998). Google Scholar
Stottmann, R. W., Anderson, R. M. & Klingensmith, J. The BMP antagonists chordin and noggin have essential but redundant roles in mouse mandibular outgrowth. Dev. Biol.240, 457–473 (2001). CASPubMed Google Scholar
Mitsiadis, T. A., Angeli, I., James, C., Lendahl, U. & Sharpe, P. T. Role of Islet1 in the patterning of murine dentition. Development130, 4451–4460 (2003). CASPubMed Google Scholar
Mucchielli, M. L. et al. Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev. Biol.189, 275–284 (1997). CASPubMed Google Scholar
Lu, M. -F., Pressman, C., Dyer, R., Johnson, R. L. & Martin, J. F. Function of Rieger sundrome gene in left–right asymmetry and craniofacial development. Nature401, 276–278 (1999). CASPubMed Google Scholar
Liu, W., Selever, J., Lu, M. -F. & Martin, J. F. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development130, 6375–6385 (2003). CASPubMed Google Scholar
Lin, C. R. et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature401, 279–282 (1999). CASPubMed Google Scholar
St. Amand, T. R. et al. Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev. Biol.217, 323–332 (2000). CASPubMed Google Scholar
Sofaer, J. A. Aspects of the tabby-crinkled-downless syndrome. I The development of Tabby teeth. J. Embryol. Exp. Morph.22, 181–205 (1969). CASPubMed Google Scholar
Sofaer, J. A. The teeth of the Sleek mouse. Arch. Oral Biol.22, 299–301 (1977). CASPubMed Google Scholar
Headon, D. J. et al. Gene defect in ectodermal dysplasia implicates a death domain adaper in development. Nature414, 913–916 (2002) Google Scholar
Mustonen, T. et al. Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev. Biol.259, 123–136 (2003). Formation of supernumerary teeth by excessive EDA signalling provided the first experimental data on how tooth number is generated. CASPubMed Google Scholar
Tucker, A. S., Headon, D., Courtney, J. -M., Overbeek, P. & Sharpe, P. T. The activation level of the TNF-family receptor, Edar, determines cusp number and tooth number during tooth development. Dev. Biol.268, 185–194 (2004). CASPubMed Google Scholar
Srivastava, A. K. et al. Ectodysplasin-A1 is sufficient to rescue both hair growth and sweat glands in tabby mice. Hum. Mol. Genet.10, 2973–2981 (2001). CASPubMed Google Scholar
Gaide, O. & Schneider, P. Permanent correction of an inherited ectodermal dysplasia with recombinant EDA. Nature Med.9, 614–618 (2003). The first example of a developmental genetic defect that can be corrected by short-term treatment with a recombinant protein. CASPubMed Google Scholar
Grüneberg, H. The molars of the tabby mouse and a test of the single activated X-chromosome hypothesis. J. Embrol. Exp. Morph.15, 223–244 (1966). Google Scholar
Sofaer, J. A. Aspects of the tabby-crinkled-downless syndrome. II. Observations on the reaction to changes of genetic background. J. Embryol. Exp. Morph.22, 207–227 (1969). CASPubMed Google Scholar
Hardcastle, Z., Mo, R., Hui, C. -C. & Sharpe, P. T. The Shh signalling pathway in tooth development:defects in Gli2 and Gli3 mutants. Development125, 2803–2811 (1998). CASPubMed Google Scholar
Sarkar, L. et al. Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc. Natl Acad. Sci. USA97, 4520–4524 (2000). CASPubMedPubMed Central Google Scholar
Neubüser, A., Peters, H., Balling, R. & Martin, G. R. Antagonistic interactions between FGF and BMP signalling pathways: a mechanism for positioning the sites of tooth formation. Cell90, 247–255 (1997). PubMed Google Scholar
Ferguson, C. A. et al. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev.12, 2636–2649 (1998). CASPubMedPubMed Central Google Scholar
Peters, H., Neubuser, A., Kratochwil, K. & Balling, R. _Pax9_- deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev.12, 2735–2747 (1998). CASPubMedPubMed Central Google Scholar
Chen, Y., Bei, M., Woo, I., Satokata, I. & Maas, R. Msx1 controls inductive signalling in mammalian tooth morphogenesis. Development122, 3035–3044 (1996). One of the first papers on the interaction between epithelial and mesenchymal genes during tooth development. CASPubMed Google Scholar
Satokata, I. & Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genet.6, 348–355 (1994). CASPubMed Google Scholar
Bei, M., Kratochwil, K. & Maas, R. L. Bmp4 rescues a non-cell-autonomous function of Msx1 in tooth development. Development127, 4711–4718 (2000). CASPubMed Google Scholar
Zhao et al. Transgenically ectopic expression of Bmp4 to the Msx1 mutant dental mesenchyme restores downstream gene expression but represses Shh and Bmp2 in the enamel knot of wildtype tooth germ. Mech. Dev.99, 29–38 (2000). CASPubMed Google Scholar
Zhang et al. A new function of Bmp4: dual role for Bmp4 in regulation of Sonic hedgehog expression in the mouse tooth germ. Development127, 1431–1443 (2000). CASPubMed Google Scholar
Aberg, T. et al. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J. Histochem. Cytochem.52, 131–139 (2004). CASPubMed Google Scholar
D'Souza, R. N. et al. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development126, 2911–2920 (1999). CASPubMed Google Scholar
Aberg, T. et al. Runx2 mediates FGF signalling from epithelium to mesenchyme during tooth morphogenesis. Dev. Biol.207, 76–93 (2004). Google Scholar
Jernvall, J., Aberg, T., Kettunen, P., Keranen, S. & Thesleff, I. The life history of an embryonic signalling center. BMP4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development125, 161–169 (1998). CASPubMed Google Scholar
Jernvall, J., Kettunen, P., Karavanova, I., Martin, L. B. & Thesleff, I. Evidence for the role of the enamel knot as a control centre in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf4 gene. Int. J. Dev. Biol.38, 463–469 (1994). This paper, together with reference 43, highlights the importance of the enamel knot and its role in cusp formation. CASPubMed Google Scholar
Vaahtokari, A., Åberg, T., Jernvall, J., Keränen, S. & Thesleff, I. The enamel knot as a signalling center in the developing mouse tooth. Mech. Dev.54, 39–43 (1996). CASPubMed Google Scholar
Tucker, A. S. & Sharpe, P. T. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J. Dental Res.78, 98–105 (1999). Google Scholar
Elomaa, O. et al. Ectodsyplasin is released by proteolytic shedding and binds to the Edar protein. Hum. Mol. Genet.10, 953–962 (2001). CASPubMed Google Scholar
Tucker, A. S. et al. Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis. Development127, 4691–4700 (2000). The first functional evidence that the enamel knot controls tooth-cusp morphogenesis. CASPubMed Google Scholar
Simons, A. L., Stritzel, F. & Stamatiou, J. Anomalies associated with hypodontia of the permanent lateral incisors and second premolar. J. Clin. Pediatr. Dent.17, 109–111 (1993). Google Scholar
Vastardis, H. The gentics of human tooth agenesis: new discoveries for understanding dental anomalies. Am. J. Orthod. Dentofacial Orthop.117, 650–656 (2000). CASPubMed Google Scholar
Vastardis, H., Karimbux, N., Guthua, S. W., Seidman, J. G. & Seidman, C. E. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nature Genet.13, 417–421 (1996). This paper shows a link between the human and mouse dental defects that are caused by mutation of theMsx1gene (see also reference 36). CASPubMed Google Scholar
Van den Boogaard, M. J., Dorland, M., Beemer, F. A. & van Amstel, H. K. MSX1 mutation is associated with oralfacial clefting and tooth agenesis. Nature Genet.24, 342–343 (2000). CASPubMed Google Scholar
Stockton, D. W., Das, P., Goldenberg, M., D'Souza, R. N. & Patel, P. I. Mutations of PAX9 is associated with oligodontia. Nature Genet.24, 18–19 (2000). CASPubMed Google Scholar
Nieminen, P. et al. Identification of a nonsense mutation in the PAX9 gene in molar oligodontia. Eur. J. Hum. Genet.9, 743–746 (2001). CASPubMed Google Scholar
Das, P. et al. Haploinsufficiency of PAX9 is associated with autosomal dominant hypodontia. Hum. Genet.110, 371–376 (2002). CASPubMed Google Scholar
Semina, E. V. et al. Cloning and characterisation of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nature. Genet14, 392–399 (1996). CASPubMed Google Scholar
Flomen, R. H. et al. Construction and analysis of a sequence-ready map in q25 Rieger syndrome can be caused by haploinsufficiency of RIEG, but also by chromosome break approximately 90kb upstream of this gene. Genomics47, 409–413 (1998). CASPubMed Google Scholar
Amendt, B. A., Semina, E. V. & Alward, W. L. Rieger syndrome: a clinical, molecular and biochemical analysis. Cell. Mol. Life Sci.57, 1652–1666 (2000). CASPubMed Google Scholar
Gorlin, R. J., Pindborg, J. & Cohen, M. M. in Syndromes with Unusual Dental Findings 649–651 (McGraw-Hill, New York, 1976). Google Scholar
Gage, P. J., Suh, H. & Camper, S. A. Dosage requirements of Pitx2 for development of multiple organs. Development126, 4643–4651 (1999). CASPubMed Google Scholar
Alward, W. L. et al. Autosomal dominant iris hypoplasia is caused by a mutation in the Rieger syndrome (RIEG/PITX2) gene. Am. J. Ophthalmol.125, 98–100.
Ferguson, B. M. et al. Cloning of tabby, the murine homologue of the human EDA gene: evidence for a membrane associated protein with a short collagenous domain. Hum. Mol. Genet.6, 1589–1594 (1997). CASPubMed Google Scholar
Srivastava, A. K. et al. The tabby phenotype is caused by mutations in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc. Natl Acad. Sci. USA94, 13069–13074 (1997). First genetic link between tabby mice and the human condition hypohidrotic ectodermal dysplasia. CASPubMedPubMed Central Google Scholar
Headon, D. J. & Overbeek, P. A. Involvement of a novel TNF receptor homolog in hair follicle development. Nature Genet.22, 370–374 (1999). CASPubMed Google Scholar
Headon, D. J. et al. Gene defect in ectodermal dysplasia implicates a novel death domain adapter in development. Nature414, 913–916 (2001). CASPubMed Google Scholar
Kere, J. et al. X-linked anhidrotic (hypohydrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nature Genet.13, 409–416 (1996). CASPubMed Google Scholar
Monreal, A. W., Zonana, J. & Ferguson, B. Identification of a new splice form of the EDA1 gene permits detection of nearly all X-linked hypohidrotic ectodermal dysplasia mutations. Am. J. Hum. Genet.63, 380–389 (1998). CASPubMedPubMed Central Google Scholar
Monreal, A. W. et al. Mutations in the human homolog of the mouse dl cause autosomal recessive and dominant hypohydrotic ectodermal dysplasia. Nature Genet.22, 366–369 (1999). CASPubMed Google Scholar
Mundlos, S. et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell89, 773–779 (1997). CASPubMed Google Scholar
Matalova, E., Tucker, A. S. & Sharpe, P. T. Death in the life of a tooth. J. Dental Res.83, 11–16 (2004). CAS Google Scholar
Smith, M. M. & Coates, M. I. in Major Events in Early Vertebrate Evolution. (ed. Ahlberg, P. E.) 223–240 (Taylor and Francis, London, 2001). Google Scholar
Reif, W. -E. Evolution of dermal skeleton and dentotion in vertebrates: the odontode-regulation theory. Evol. Biol.15, 287–368 (1982). Google Scholar
Smith, M. M. & Johanson, Z. Separate evolutionary origins of teeth from evidence in fossil jawed vertebrates. Science299, 1235–1236 (2003). CASPubMed Google Scholar
Kratochwil, K., Dull, M., Fariñas, I., Galceran, J. & Grosschedl, R. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev.10, 1382–1394 (1996). CASPubMed Google Scholar
Tucker, A. S., Al Khamis, A. & Sharpe, P. T. Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme. Dev. Dyn.212, 533–539 (1998). CASPubMed Google Scholar
MacKenzie, A., Ferguson, M. W. & Sharpe, P. T. Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development115, 403–420 (1992). CASPubMed Google Scholar
Kettunen, P. et al. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev. Dyn.219, 322–332 (2000). CASPubMed Google Scholar
Kettunen, P., Karavanova, I. & Thesleff, I. Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1,-2,-3, and of FGFR4; and stimulation of cell proliferation by FGF-2,-4,-8, and -9. Dev. Genet.22, 374–385 (1998). CASPubMed Google Scholar
Åberg, T., Wozney, J. & Thesleff, I. Expression patterns of bone morphogenetic proteins (bmps) in the developing mouse tooth suggest poles in morphogenesis and cell differentiation. Dev. Dyn.210, 383–396 (1997). PubMed Google Scholar
Sarkar, L. & Sharpe, P. T. Expression of wnt signalling pathway genes during tooth development. Mech. Dev.85, 197–200 (1999). CASPubMed Google Scholar
Snead, M. L., Luo, W., Lau, E. C. & Slavkin, H. C. Spatial- and temporal-restricted pattern for amelogenin gene expression during mouse molar tooth organogenesis. Development104, 77–85 (1988). CASPubMed Google Scholar
Bègue-Kirn, C., Krebsbach, P. H., Bartlett, J. D. & Butler, W. T. Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Euro. J. Oral Sci.106, 963–970 (1998). Google Scholar
Developmental Biology Programme of the University of Helsinki. Gene Expression in Tooth [online], http://bite-it.helsinki.fi (1996).