Emerging technologies for gene manipulation in Drosophila melanogaster (original) (raw)
Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science218, 348–353 (1982). CASPubMed Google Scholar
Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development118, 401–415 (1993). CASPubMed Google Scholar
Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development117, 1223–1237 (1993). CASPubMed Google Scholar
Golic, K. G. & Golic, M. M. Engineering the Drosophila genome: chromosome rearrangements by design. Genetics144, 1693–1711 (1996). CASPubMedPubMed Central Google Scholar
Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science287, 2185–2195 (2000). PubMed Google Scholar
Thibault, S. T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nature Genet.36, 283–287 (2004). This article describes the privately financed effort that generatedpiggyBactransposon insertions in manyD. melanogastergenes. CASPubMed Google Scholar
Ryder, E. & Russell, S. Transposable elements as tools for genomics and genetics in Drosophila. Brief. Funct. Genomic. Proteomic.2, 57–71 (2003). CASPubMed Google Scholar
Bellen, H. J. et al. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics167, 761–781 (2004). This paper describes the publicly financed effort that generated aP-element transposon insertion in about 40% of allD. melanogastergenes. CASPubMedPubMed Central Google Scholar
Parks, A. L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genet.36, 288–292 (2004). The authors describe a privately financed effort that generated large numbers of deficiencies usingP-elements andpiggyBacs that containFRTsites. CASPubMed Google Scholar
Ryder, E. et al. The DrosDel collection: a set of _P_-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics167, 797–813 (2004). The authors discuss the generation of numerous transposon insertions that containFRTsites. These insertions will be used to generate many molecularly defined deletions covering the entireD. melanogastergenome. CASPubMedPubMed Central Google Scholar
Zhai, R. G. et al. Mapping Drosophila mutations with molecularly defined P element insertions. Proc. Natl Acad. Sci. USA100, 10860–10865 (2003). This paper describes the use of molecularly definedP-element insertions for the rapid and low-cost genetic mapping of mutations. CASPubMedPubMed Central Google Scholar
Gong, W. J. & Golic, K. G. Ends-out, or replacement, gene targeting in Drosophila. Proc. Natl Acad. Sci. USA100, 2556–2561 (2003). The first report of ends-out replacement gene targeting inD. melanogaster. CASPubMedPubMed Central Google Scholar
Stemple, D. L. TILLING — a high-throughput harvest for functional genomics. Nature Rev. Genet.5, 145–150 (2004). CASPubMed Google Scholar
Henikoff, S., Till, B. J. & Comai, L. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol.135, 630–636 (2004). CASPubMedPubMed Central Google Scholar
Zeidler, M. P. et al. Temperature-sensitive control of protein activity by conditionally splicing inteins. Nature Biotechnol.22, 871–876 (2004). A report on the generation of a conditionally spliced intein, which can be incorporated in a host protein, making it temperature sensitive. CAS Google Scholar
Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage φC31. Genetics166, 1775–1782 (2004). The first report of the use of φC31 integrase to obtain transgenicD. melanogaster. CASPubMedPubMed Central Google Scholar
Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nature Rev. Genet.2, 769–779 (2001). CASPubMed Google Scholar
Court, D. L., Sawitzke, J. A. & Thomason, L. C. Genetic engineering using homologous recombination. Annu. Rev. Genet.36, 361–388 (2002). CASPubMed Google Scholar
Adams, M. D. & Sekelsky, J. J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nature Rev. Genet.3, 189–198 (2002). CASPubMed Google Scholar
Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl Acad. Sci. USA98, 15050–15055 (2001). CASPubMedPubMed Central Google Scholar
Spradling, A. C. et al. The Berkeley Drosophila Genome Project gene disruption project: single _P_-element insertions mutating 25% of vital Drosophila genes. Genetics153, 135–177 (1999). CASPubMedPubMed Central Google Scholar
Beinert, N. et al. Systematic gene targeting on the X chromosome of Drosophila melanogaster. Chromosoma113, 271–275 (2004). CASPubMed Google Scholar
Handler, A. M. & Harrell, R. A. Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol. Biol.8, 449–457 (1999). CASPubMed Google Scholar
Hacker, U., Nystedt, S., Barmchi, M. P., Horn, C. & Wimmer, E. A. _piggyBac_-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc. Natl Acad. Sci. USA100, 7720–7725 (2003). PubMedPubMed Central Google Scholar
Horn, C., Offen, N., Nystedt, S., Hacker, U. & Wimmer, E. A. _piggyBac_-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics163, 647–661 (2003). CASPubMedPubMed Central Google Scholar
Bonin, C. P. & Mann, R. S. A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila. Genetics167, 1801–1811 (2004). CASPubMedPubMed Central Google Scholar
Skarnes, W. C., Auerbach, B. A. & Joyner, A. L. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev.6, 903–918 (1992). CASPubMed Google Scholar
Lukacsovich, T. et al. Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics157, 727–742 (2001). CASPubMedPubMed Central Google Scholar
Liu, X. Q. Protein-splicing intein: Genetic mobility, origin, and evolution. Annu. Rev. Genet.34, 61–76 (2000). CASPubMed Google Scholar
Paulus, H. Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem.69, 447–496 (2000). CASPubMed Google Scholar
Yu, W. et al. Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions. Hum. Mol. Genet.12, 2145–2152 (2003). CASPubMed Google Scholar
Cooley, L., Thompson, D. & Spradling, A. C. Constructing deletions with defined endpoints in Drosophila. Proc. Natl Acad. Sci. USA87, 3170–3173 (1990). CASPubMedPubMed Central Google Scholar
Huet, F. et al. A deletion-generator compound element allows deletion saturation analysis for genomewide phenotypic annotation. Proc. Natl Acad. Sci. USA99, 9948–9953 (2002). CASPubMedPubMed Central Google Scholar
Mohr, S. E. & Gelbart, W. M. Using the P{wHy} hybrid transposable element to disrupt genes in region 54D–55B in Drosophila melanogaster. Genetics162, 165–176 (2002). CASPubMedPubMed Central Google Scholar
Chen, B., Chu, T., Harms, E., Gergen, J. P. & Strickland, S. Mapping of Drosophila mutations using site-specific male recombination. Genetics149, 157–163 (1998). CASPubMedPubMed Central Google Scholar
Lindsley, D. L. & Zimm, G. G. The Genome of Drosophila melanogaster (Academic, San Diego, 1992).
Berger, J. et al. Genetic mapping with SNP markers in Drosophila. Nature Genet.29, 475–481 (2001). CASPubMed Google Scholar
Martin, S. G., Dobi, K. C. & St Johnston, D. A rapid method to map mutations in Drosophila. Genome Biol.2, RESEARCH0036.1–0036.12 (2001). Google Scholar
Nairz, K., Stocker, H., Schindelholz, B. & Hafen, E. High-resolution SNP mapping by denaturing HPLC. Proc. Natl Acad. Sci. USA99, 10575–10580 (2002). CASPubMedPubMed Central Google Scholar
Verstreken, P. et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron40, 733–748 (2003). CASPubMed Google Scholar
Gong, M. & Rong, Y. S. Targeting multi-cellular organisms. Curr. Opin. Genet. Dev.13, 215–220 (2003). CASPubMed Google Scholar
Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science299, 2039–2045 (2003). CASPubMed Google Scholar
Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science303, 832–835 (2004). CASPubMed Google Scholar
Bentley, A., MacLennan, B., Calvo, J. & Dearolf, C. R. Targeted recovery of mutations in Drosophila. Genetics156, 1169–1173 (2000). The first report of targeted gene inactivation using ethylmethane sulphonate inD. melanogaster. CASPubMedPubMed Central Google Scholar
Carpenter, A. E. & Sabatini, D. M. Systematic genome-wide screens of gene function. Nature Rev. Genet.5, 11–22 (2004). CASPubMed Google Scholar
Rong, Y. S. et al. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev.16, 1568–1581 (2002). CASPubMedPubMed Central Google Scholar
Rong, Y. S. & Golic, K. G. Gene targeting by homologous recombination in Drosophila. Science288, 2013–2018 (2000). CASPubMed Google Scholar
Seum, C. et al. Isolation of Su(var)3-7 mutations by homologous recombination in Drosophila melanogaster. Genetics161, 1125–1136 (2002). CASPubMedPubMed Central Google Scholar
Elmore, T., Ignell, R., Carlson, J. R. & Smith, D. P. Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J. Neurosci.23, 9906–9912 (2003). CASPubMedPubMed Central Google Scholar
Lankenau, S. et al. Knockout targeting of the Drosophila _Nap1_gene and examination of DNA repair tracts in the recombination products. Genetics163, 611–623 (2003). CASPubMedPubMed Central Google Scholar
Liu, H. & Kubli, E. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl Acad. Sci. USA100, 9929–9933 (2003). CASPubMedPubMed Central Google Scholar
Dolezal, T., Gazi, M., Zurovec, M. & Bryant, P. J. Genetic analysis of the ADGF multigene family by homologous recombination and gene conversion in Drosophila. Genetics165, 653–666 (2003). CASPubMedPubMed Central Google Scholar
Sears, H. C., Kennedy, C. J. & Garrity, P. A. Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development130, 3557–3565 (2003). CASPubMed Google Scholar
Egli, D. et al. Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J.22, 100–108 (2003). CASPubMedPubMed Central Google Scholar
Funk, N., Becker, S., Huber, S., Brunner, M. & Buchner, E. Targeted mutagenesis of the Sap47 gene of Drosophila: flies lacking the synapse associated protein of 47 kDa are viable and fertile. BMC Neurosci.5, 16 (2004). PubMedPubMed Central Google Scholar
Han, Z., Li, X., Wu, J. & Olson, E. N. A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proc. Natl Acad. Sci. USA101, 12567–12572 (2004). CASPubMedPubMed Central Google Scholar
Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron43, 703–714 (2004). CASPubMed Google Scholar
Bibikova, M., Beumer, K., Trautman, J. K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science300, 764 (2003). CASPubMed Google Scholar
Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science300, 763 (2003). PubMed Google Scholar
Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics161, 1169–1175 (2002). CASPubMedPubMed Central Google Scholar
McCallum, C. M., Comai, L., Greene, E. A. & Henikoff, S. Targeted screening for induced mutations. Nature Biotechnol.18, 455–457 (2000). The first article to describe the use of TILLING inArabidopsis thaliana. CAS Google Scholar
Till, B. J. et al. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res.13, 524–530 (2003). CASPubMedPubMed Central Google Scholar
Greene, E. A. et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics164, 731–740 (2003). CASPubMedPubMed Central Google Scholar
Wienholds, E., Schulte-Merker, S., Walderich, B. & Plasterk, R. H. Target-selected inactivation of the zebrafish rag1 gene. Science297, 99–102 (2002). CASPubMed Google Scholar
Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E. & Plasterk, R. H. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genet.35, 217–218 (2003). CASPubMed Google Scholar
Smits, B. M., Mudde, J., Plasterk, R. H. & Cuppen, E. Target-selected mutagenesis of the rat. Genomics83, 332–334 (2004). CASPubMed Google Scholar
Till, B. J. et al. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol.4, 12 (2004). PubMedPubMed Central Google Scholar
Perry, J. A. et al. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol.131, 866–871 (2003). CASPubMedPubMed Central Google Scholar
Ashburner, M. Drosophila: a Laboratory Handbook and Manual (Cold Spring Harbor Laboratory Press, Plainview, New York, 1989). Google Scholar
Till, B. J., Burtner, C., Comai, L. & Henikoff, S. Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res.32, 2632–2641 (2004). CASPubMedPubMed Central Google Scholar
Oleykowski, C. A., Bronson Mullins, C. R., Godwin, A. K. & Yeung, A. T. Mutation detection using a novel plant endonuclease. Nucleic Acids Res.26, 4597–4602 (1998). CASPubMedPubMed Central Google Scholar
Koundakjian, E. J., Cowan, D. M., Hardy, R. W. & Becker, A. H. The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics167, 203–206 (2004). CASPubMedPubMed Central Google Scholar
Comai, L. et al. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J.37, 778–786 (2004). CASPubMed Google Scholar
Smits, B. M., van Zutphen, B. F., Plasterk, R. H. & Cuppen, E. Genetic variation in coding regions between and within commonly used inbred rat strains. Genome Res.14, 1285–1290 (2004). CASPubMedPubMed Central Google Scholar
O'Kane, C. J. & Gehring, W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl Acad. Sci. USA84, 9123–9127 (1987). CASPubMedPubMed Central Google Scholar
Thorpe, H. M. & Smith, M. C. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl Acad. Sci. USA95, 5505–5510 (1998). CASPubMedPubMed Central Google Scholar
Branda, C. S. & Dymecki, S. M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell6, 7–28 (2004). CASPubMed Google Scholar
Groth, A. C., Olivares, E. C., Thyagarajan, B. & Calos, M. P. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl Acad. Sci. USA97, 5995–6000 (2000). CASPubMedPubMed Central Google Scholar
Belteki, G., Gertsenstein, M., Ow, D. W. & Nagy, A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing φC31 integrase. Nature Biotechnol.21, 321–324 (2003). CAS Google Scholar
Ortiz-Urda, S. et al. Stable nonviral genetic correction of inherited human skin disease. Nature Med.8, 1166–1170 (2002). CASPubMed Google Scholar
Ortiz-Urda, S. et al. φC31 integrase-mediated nonviral genetic correction of junctional epidermolysis bullosa. Hum. Gene Ther.14, 923–928 (2003). CASPubMed Google Scholar
Ortiz-Urda, S. et al. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J. Clin. Invest.111, 251–255 (2003). CASPubMedPubMed Central Google Scholar
Thyagarajan, B., Olivares, E. C., Hollis, R. P., Ginsburg, D. S. & Calos, M. P. Site-specific genomic integration in mammalian cells mediated by phage φC31 integrase. Mol. Cell Biol.21, 3926–3934 (2001). CASPubMedPubMed Central Google Scholar
Olivares, E. C. et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nature Biotechnol.20, 1124–1128 (2002). CAS Google Scholar
Hollis, R. P. et al. Phage integrases for the construction and manipulation of transgenic mammals. Reprod. Biol. Endocrinol.1, 79 (2003). PubMedPubMed Central Google Scholar
Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl Acad. Sci. USA97, 5978–5983 (2000). CASPubMedPubMed Central Google Scholar
Lee, E. C. et al. A highly efficient _Escherichia coli_-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics73, 56–65 (2001). This is a description of a useful recombineering system that is temperature inducible, and that can be efficiently used for recombineering-mediated gap repair and mutagenesis. CASPubMed Google Scholar
Muyrers, J. P., Zhang, Y., Testa, G. & Stewart, A. F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res.27, 1555–1557 (1999). CASPubMedPubMed Central Google Scholar
Muyrers, J. P. et al. Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep.1, 239–243 (2000). CASPubMedPubMed Central Google Scholar
Yang, Y. & Sharan, S. K. A simple two-step, 'hit and fix' method to generate subtle mutations in BACs using short denatured PCR fragments. Nucleic Acids Res.31, e80 (2003). PubMedPubMed Central Google Scholar
Jamsai, D., Orford, M., Fucharoen, S., Williamson, R. & Ioannou, P. A. Insertion of modifications in the β-globin locus using GET recombination with single-stranded oligonucleotides and denatured PCR fragments. Mol. Biotechnol.23, 29–36 (2003). CASPubMed Google Scholar
Swaminathan, S. et al. Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis29, 14–21 (2001). CASPubMed Google Scholar
Zhang, Y., Muyrers, J. P., Rientjes, J. & Stewart, A. F. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol. Biol.4, 1 (2003). PubMedPubMed Central Google Scholar
Wild, J., Hradecna, Z. & Szybalski, W. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res.12, 1434–1444 (2002). The first article to describe a conditionally amplifiable BAC. This plasmid contains two origins of replication: one for single-copy number (useful for recombineering and clone maintenance), and another for inducible high-copy number in specific bacteria (to facilitate plasmid preparation). CASPubMedPubMed Central Google Scholar
Groth, A. C. & Calos, M. P. Phage integrases: biology and applications. J. Mol. Biol.335, 667–678 (2004). CASPubMed Google Scholar
Xie, H. B. & Golic, K. G. Gene deletions by ends-in targeting in Drosophila melanogaster. Genetics168, 1477–1489 (2004). CASPubMedPubMed Central Google Scholar