The co-evolutionary genetics of ecological communities (original) (raw)
References
Darwin, C. On the Origin of Species95, 102 (Harvard Univ. Press, Cambridge, 1964). Google Scholar
Futuyma, D. J. & Slatkin M. (eds) Coevolution (Sinauer Associates, Sunderland, 1983). One of the earliest and most influential edited volumes on co-evolution, which clearly frames many important ecological genetic questions. Google Scholar
Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, Chicago, 2005). This book develops the leading evolutionary hypothesis of community ecology, that local co-adaptation is the fundamental unit of ecosystem function. Book Google Scholar
Clayton, D. H. & Moore J. (eds) Host–Parasite Evolution: General Principles & Avian Models (Oxford Univ. Press, Oxford, 1997). Google Scholar
Spaulding, A. E. & von Dohlen, C. D. Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA. Insect Mol. Biol.10, 57–67 (2001). ArticleCASPubMed Google Scholar
Fuqua, C. & Winans, S. C. Conserved _cis_-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J. Bacteriol.178, 435–440 (1996). ArticleCASPubMedPubMed Central Google Scholar
Tollrian, R. & Harvell C. D. The Ecology and Evolution of Inducible Defenses (Princeton Univ. Press, Princeton, 1999). Google Scholar
Boeing, W. J., Wissel, B. & Ramcharan, C. W. Costs and benefits of Daphnia defense against Chaoborus in nature. Can. J. Fish. Aquat. Sci.62, 1286–1294 (2005). Article Google Scholar
Lively, C. M. Predator-induced shell dimorphism in the acorn barnacle Chthamalus anisopoma. Evolution40, 232–242 (1986). ArticlePubMed Google Scholar
Verschoor, A. M., van der Stap, I., Helmsing, N. R., Lurling, M. & Van Donk, E. Inducible colony formation within the Scenedesmaceae: adaptive responses to infochemicals from two different herbivore taxa. J. Phycol.40, 808–814 (2004). Article Google Scholar
Van Donk, E., Lürling, M. & Lampert, W. in Ecology and Evolution of Inducible Defenses (eds Tollrian, R. & Harvell, C. D.) 89–103 (Princeton Univ. Press, Princeton, 1999). Google Scholar
Kyong, H., Jang, M.-H., Joo, G.-J. & Takamura, N. Growth and morphological changes in Scenedesmus dimorphus induced by substances releases from grazers, Daphnia magna and Moina macrocopa. Kor. J. Limnol.34, 285–291 (2001). Google Scholar
Vos, M. et al. Inducible defenses and trophic structure. Ecology85, 2783–2794 (2004). Article Google Scholar
Fisher, R. A. The Genetical Theory of Natural Selection 2nd edn (Dover Press, New York, 1958). Google Scholar
Lerner, I. M. Genetic Homeostasis (John Wiley & Sons, New York, 1954). Google Scholar
van Valen, L. A new evolutionary law. Evol. Theory1, 1–30 (1973). Google Scholar
Webb, C. A complete classification of Darwinian extinction in ecological interactions. Am. Nat.161, 181–205 (2003). ArticlePubMed Google Scholar
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, Princeton, 2001). Google Scholar
Whitham, T. G. et al. Community genetics: a consequence of the extended phenotype. Ecology84, 559–573 (2003). Article Google Scholar
Whitham, T. G. et al. A framework for community and ecosystem genetics: from genes to ecosystems. Nature Rev. Genet.7, 510–523 (2006). ArticleCASPubMed Google Scholar
Wade, M. J. Community genetics and species interactions. Ecology84, 583–585 (2003). Article Google Scholar
Kiester, A. R., Lande, R. & Schemske, D. W. Models of coevolution and speciation in plants and their pollinators. Am. Nat.124, 220–243 (1984). These authors established the principles that co-evolution takes place between traits and that the co-evolutionary effective population size is determined by the rarer species. Article Google Scholar
Brodie III, E. D. & Ridenhour, B. J. Reciprocal selection at the phenotypic interface of coevolution. Integr. Comp. Biol.43, 408–418 (2003). Article Google Scholar
Ebert, D., Zschokke-Rohringer, C. D. & Carius, H.-J. Within- and between-population variation for resistance of Daphnia magna to the bacterial endoparasite, Pasteuria ramose. Proc. R. Soc. B Biol. Sci.265, 2127–2134 (1998). Article Google Scholar
Agrawal, A. & Lively, C. M. Infection genetics: gene-for-gene versus matching alleles models and all points in between. Evol. Ecol. Res.4, 79–90 (2002). Google Scholar
Via, S. & Lande, R. Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution39, 505–522 (1985). ArticlePubMed Google Scholar
Falconer, D. S. The problem of environment and selection. Am. Nat.86, 293–298 (1952). Article Google Scholar
Stearns, S. C. The evolutionary significance of phenotypic plasticity. BioScience39, 436–445 (1989). Article Google Scholar
Schlichting, C. D. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective (Sinauer Associates, Sunderland, 1998). Google Scholar
Ahnesjo, J. & Forsman, A. Differential habitat selection by pygmy grasshopper color morphs; interactive effects of temperature and predator avoidance. Evol. Ecol.20, 235–257 (2006). Article Google Scholar
Curtsinger, J. W., Service, P. M. & Prout, T. Antagonistic pleiotropy, reversal of dominance, and genetic polymorphism. Am. Nat.144, 210–228 (1994). Article Google Scholar
Page, R. D. M. Tangled Trees: Phylogeny, Cospeciation, and Coevolution (Univ. of Chicago Press, Chicago, 2003). The most comprehensive and up-to-date reference on the issues of comparing phylogenies in co-evolutionary studies. Google Scholar
Jousselin, E., Rasplus, J.-Y. & Kjellberg, F. Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution57, 1255–1269 (2003). ArticlePubMed Google Scholar
Herre, E. A. in Levels of Selection in Evolution (ed. Keller, L.) 209–237 (Princeton Univ. Press, Princeton, 1999). Google Scholar
Clark, M. A., Moran, N. A., Baumann, P. & Wernegreen, J. J. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution54, 517–525 (2000). ArticleCASPubMed Google Scholar
Page, R. D. M. & Charleston, M. A. Trees within trees: phylogeny and historical associations. Trends Ecol. Evol.13, 356–359 (1998). ArticleCASPubMed Google Scholar
Whitlock, M. C., Phillips, P. C. & Wade, M. J. Gene interaction affects the additive genetic variance in subdivided populations with migration and extinction. Evolution72, 1758–1769 (1993). Article Google Scholar
Brodie, E. D. Jr, Ridenhour, B. J. & Brodie III, E. D. The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution56, 2067–2082 (2002). ArticlePubMed Google Scholar
Wade, M. J. in Epistasis and the Evolutionary Process (eds Wolf, J., Brodie III, E. D. & Wade, M. J.) 213–231 (Oxford Univ. Press, Oxford, 2000). Google Scholar
Wade, M. J. in Artificial Life VII Workshop Proceedings (eds Maley, C. C. & Boudreau, E.) 79–81 (MIT Press, Cambridge, 2000). Google Scholar
Cockerham, C. C. & Weir, B. S. Digenic descent measures for finite populations. Genet. Res.30, 121–147 (1977). Article Google Scholar
Goodnight, C. J. On the effect of founder events on the epistatic genetic variance. Evolution41, 80–91 (1987). ArticlePubMed Google Scholar
Goodnight, C. J. Epistasis and the effect of founder events on the additive genetic variance. Evolution42, 441–454 (1988). ArticlePubMed Google Scholar
Wade, M. J. & Goodnight, C. J. Cyto-nuclear epistasis: two-locus random genetic drift in hermaphroditic and dioecious species. Evolution60, 643–659 (2006). ArticleCASPubMed Google Scholar
Wade, M. J. in Key Words in Evolutionary Biology (eds Keller, E. F. & Lloyd, E. A.) 87–91 (Harvard Univ. Press, Cambridge, 1992). Google Scholar
Wade, M. J., Winther, R. G., Agrawal, A. F. & Goodnight, C. J. Alternative definitions of epistasis: dependence and interaction. Trends Ecol. Evol.16, 498–504 (2001). Article Google Scholar
Phillips, P. C., Otto, S. P. & Whitlock, M. C. in Epistasis and the Evolutionary Process (eds Wolf, J. B., Brodie, E. D. & Wade, M. J.) 20–38 (Oxford Univ. Press, Oxford, 2000). Google Scholar
Priest, N. K., Roach, D. A. and Galloway, L. F. Mating-induced recombination in fruit flies. Evolution61, 160–167 (2007). ArticlePubMed Google Scholar
Weir, B. S. Genetic Data Analysis II (Sinauer Associates, Sunderland, 1996). Google Scholar
Cruzan, M. B. & Arnold, M. L. Consequences of cyto-nuclear epistasis and assortative mating for the genetic structure of hybrid populations. Heredity82, 36–45 (1999). Article Google Scholar
Wolf, J. B., Brodie III, E. D. & Wade, M. J. in Phenotypic Plasticity. Functional and Conceptual Approaches (eds DeWitt, T. & Scheiner, S.) (Oxford Univ. Press, Oxford, 2002). Google Scholar
Blachford, A. & Agrawal, A. F. Assortative mating for fitness and the evolution of recombination. Evolution60, 1337–1343 (2006). ArticlePubMed Google Scholar
Lapolla, J. S., Schultz, T. R., Kjer, K. M. & Bischoff, J. F. Phylogenetic position of the ant genus Acropyga Roger (Hymenoptera: Formicidae) and the evolution of trophophoresy. Insect Syst. Evol.37, 197–212 (2006). ArticlePubMedPubMed Central Google Scholar
Braendle, C. et al. Developmental origin and evolution of bacteriocytes in the aphid — Buchnera symbiosis. PLoS Biol.1, e21 (2003). ArticlePubMedPubMed Central Google Scholar
Lynch, M. & Gabriel W. Mutation load and the survival of small populations. Evolution44, 1725–1737 (1990). ArticlePubMed Google Scholar
Charlesworth, D., Morgan, M. T. & Charlesworth, B. Mutation accumulation in finite outbreeding and inbreeding populations. Genet. Res.61, 39–56 (1993). Article Google Scholar
Paine, T. D., Raffa, K. F. & Harrington, T. C. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol.42, 179–206 (1997). ArticleCASPubMed Google Scholar
Wilson, D. S. & Knollenberg W. G. Adaptive indirect effects: the fitness of burying beetles with and without their phoretic mites. Evol. Ecol.1, 139–159, (2005). Article Google Scholar
Bergstrom, C. T. et al. in Genetic and Cultural Evolution of Cooperation (ed. Hammerstein, P.) 241–256 (MIT Press, Cambridge, 2003). Google Scholar
Brandvain, Y., Barker, M. S. & Wade M. J. Gene co-inheritance and transfer. Science (in the press).
Neuhauser, C. et al. Community genetics: expanding the synthesis of ecology and genetics. Ecology84, 545–558 (2003). Article Google Scholar
Clay, K. Hereditary symbiosis in the grass genus, Danthonia. New Phytol.126, 223–231 (1994). Article Google Scholar
Clayton, D. H., Bush, S. E., Goates, B. M. & Johnson, K. P. Host defense reinforces host–parasite cospeciation Proc. Natl Acad. Sci. USA100, 15694–15699 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hessen, D. O. & Van Donk, E. Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch. Hydrobiol.127, 129–140 (1993). Google Scholar
Spaulding, A. W. & von Dohlen, C. D. Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA. Insect Mol. Biol.10, 57–67 (2001). ArticleCASPubMed Google Scholar