Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility (original) (raw)
Lawrence, P. A. & Shelton, P. M. J. The determination of polarity in the developing insect retina. J. Embryol. Exp. Morph.33, 471–486 (1975). CASPubMed Google Scholar
Adler, P. N. The genetic control of tissue polarity in Drosophila. BioEssays14, 735–741 (1992). ArticleCASPubMed Google Scholar
Gubb, D. & García-Bellido, A. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J. Embryol. Exp. Morphol.68, 37–57 (1982). CASPubMed Google Scholar
Vinson, C. R. & Adler, P. N. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature329, 549–551 (1987). This paper was the first to analyse thefzloss-of-function phenotype in detail. It showed that thefz-regulated aspect of PCP has a non-autonomous feature. ArticleCASPubMed Google Scholar
Klein, T. J. & Mlodzik, M. Planar cell polarization: an emerging model points in the right direction. Annu. Rev. Cell Dev. Biol.21, 155–176 (2005). ArticleCASPubMed Google Scholar
Mlodzik, M. Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet.18, 564–571 (2002). ArticleCASPubMed Google Scholar
Strutt, D. Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development130, 4501–4513 (2003). ArticleCASPubMed Google Scholar
Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell5, 367–377 (2003). ArticleCASPubMed Google Scholar
Wallingford, J. B., Fraser, S. E. & Harland, R. M. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell2, 695–706 (2002). ArticleCASPubMed Google Scholar
Keller, R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science298, 1950–1954 (2002). ArticleCASPubMed Google Scholar
Myers, D. C., Sepich, D. S. & Solnica-Krezel, L. Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet.18, 447–455 (2002). ArticleCASPubMed Google Scholar
Bellaiche, Y., Beaudoin-Massiani, O., Stuttem, I. & Schweisguth, F. The planar cell polarity protein Strabismus promotes Pins anterior localization during asymmetric division of sensory organ precursor cells in Drosophila. Development131, 469–478 (2004). ArticleCASPubMed Google Scholar
Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H. & Schweisguth, F. Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nature Cell Biol.3, 50–57 (2001). ArticleCASPubMed Google Scholar
Goldstein, B., Takeshita, H., Mizumoto, K. & Sawa, H. Wnt signals can function as positional cues in establishing cell polarity. Dev. Cell10, 391–396 (2006). ArticleCASPubMedPubMed Central Google Scholar
Montcouquiol, M. et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature423, 173–177 (2003). This paper puts on the PCP map the polarization of the sensory cells in the mouse cochlea. A nice genetic study of the role ofVangl2/Stbmin the mouse. ArticleCASPubMed Google Scholar
Curtin, J. A. et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr. Biol.13, 1129–1133 (2003). ArticleCASPubMed Google Scholar
Montcouquiol, M., Crenshaw, E. B., 3rd & Kelley, M. W. Noncanonical Wnt signaling and neural polarity. Annu. Rev. Neurosci.29, 363–386 (2006). ArticleCASPubMed Google Scholar
Guo, N., Hawkins, C. & Nathans, J. Frizzled6 controls hair patterning in mice. Proc. Natl Acad. Sci. USA101, 9277–9281 (2004). A knockout of theFz6gene showed 'classical' PCP defects in mouse fur, analogous to the defects inD. melanogasterwing or abdomen cuticle, showing the conserved PCP features in the epidermis of insects and mammals. ArticleCASPubMedPubMed Central Google Scholar
Park, T. J., Haigo, S. L. & Wallingford, J. B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nature Genet.38, 303–311 (2006). ArticleCASPubMed Google Scholar
Simons, M. & Walz, G. Polycystic kidney disease: cell division without a c(l)ue? Kidney Int.70, 854–864 (2006). ArticleCASPubMed Google Scholar
Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science313, 629–633 (2006). ArticleCASPubMed Google Scholar
Keller, R. et al. Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. Lond., B, Biol. Sci.355, 897–922 (2000). ArticleCAS Google Scholar
Adler, P. N., Krasnow, R. E. & Liu, J. Tissue polarity points from cells that have higher Frizzled levels towards cells that have lower Frizzled levels. Curr. Biol.7, 940–949 (1997). ArticleCASPubMed Google Scholar
Bastock, R., Strutt, H. & Strutt, D. Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development130, 3007–3014 (2003). ArticleCASPubMed Google Scholar
Jenny, A., Reynolds-Kenneally, J., Das, G., Burnett, M. & Mlodzik, M. Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding. Nature Cell Biol.7, 691–697 (2005). Genetic and physical interactions between DGO, PK and DSH define that DGO and PK compete for DSH binding and that, in contrast to PK, DGO promotes DSH mediated Fz/PCP signalling. ArticleCASPubMed Google Scholar
Tree, D. R. et al. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell109, 371–381 (2002). This paper analyses the role of PK and shows that it antagonizes DSH membrane localization. The potential feedback loops among the core PCP genes are proposed. ArticleCASPubMed Google Scholar
Ma, D., Yang, C. H., McNeill, H., Simon, M. A. & Axelrod, J. D. Fidelity in planar cell polarity signalling. Nature421, 543–547 (2003). ArticleCASPubMed Google Scholar
Matakatsu, H. & Blair, S. S. Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development131, 3785–3794 (2004). ArticleCASPubMed Google Scholar
Matakatsu, H. & Blair, S. S. Separating the adhesive and signaling functions of the Fat and Dachsous protocadherins. Development133, 2315–2324 (2006). ArticleCASPubMed Google Scholar
Rawls, A. S., Guinto, J. B. & Wolff, T. The cadherins Fat and Dachsous regulate dorsal/ventral signaling in the Drosophila eye. Curr. Biol12, 1021–1026 (2002). ArticleCASPubMed Google Scholar
Simon, M. A. Planar cell polarity in the Drosophila eye is directed by graded Four-jointed and Dachsous expression. Development131, 6175–6184 (2004). ArticleCASPubMed Google Scholar
Yang, C., Axelrod, J. D. & Simon, M. A. Regulation of Frizzled by Fat-like cadherins during planar polarity signaling in the Drosophila compound eye. Cell108, 675–688 (2002). This is the first paper to put the Fat–Dachsous (FT–DS) cadherins on the map in the context of PCP establishment. It indicates that the FT–DS interaction might influence FZ activity. ArticleCASPubMed Google Scholar
Zeidler, M. P., Perrimon, N. & Strutt, D. I. The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification. Curr. Biol.9, 1363–1372 (1999). ArticleCASPubMed Google Scholar
Zeidler, M. P., Perrimon, N. & Strutt, D. I. Multiple roles for four-jointed in planar polarity and limb patterning. Dev. Biol.228, 181–196 (2000). ArticleCASPubMed Google Scholar
Strutt, H., Mundy, J., Hofstra, K. & Strutt, D. Cleavage and secretion is not required for Four-jointed function in Drosophila patterning. Development131, 881–890 (2004). ArticleCASPubMed Google Scholar
Fanto, M. et al. The tumor-suppressor and cell adhesion molecule Fat controls planar polarity via physical interactions with Atrophin, a transcriptional co-repressor. Development130, 763–774 (2003). ArticleCASPubMed Google Scholar
Axelrod, J. D. Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev.15, 1182–1187 (2001). CASPubMedPubMed Central Google Scholar
Das, G., Jenny, A., Klein, T. J., Eaton, S. & Mlodzik, M. Diego interacts with Prickle and Strabismus/Van Gogh to localize planar cell polarity complexes. Development131, 4467–4476 (2004). ArticleCASPubMed Google Scholar
Das, G., Reynolds-Kenneally, J. & Mlodzik, M. The atypical cadherin Flamingo links Frizzled and Notch signaling in planar polarity establishment in the Drosophila eye. Dev. Cell2, 655–666 (2002). ArticleCASPubMed Google Scholar
Strutt, D., Johnson, R., Cooper, K. & Bray, S. Asymmetric localization of frizzled and the determination of Notch-dependent cell fate in the Drosophila eye. Curr. Biol.12, 813–824 (2002). ArticleCASPubMed Google Scholar
Strutt, D. I. Asymmetric localization of frizzled and the establishment of cell polarity in the Drosophila wing. Mol. Cell7, 367–375 (2001). This work shows the asymmetric localization of FZ (as a FZ–GFP transgene) to one side of a wing cell undergoing Fz/PCP signalling. Further works followed this example for the other core PCP factors. ArticleCASPubMed Google Scholar
Wu, J., Klein, T. J. & Mlodzik, M. Subcellular localization of frizzled receptors, mediated by their cytoplasmic tails, regulates signaling pathway specificity. PLoS Biol.2, 1004–1014 (2004). This paper shows that FZ has to be localized apically as a prerequisite for its function in PCP signalling. It maps the sequences associated/required for the apical localization of FZ. CAS Google Scholar
Jenny, A., Darken, R. S., Wilson, P. A. & Mlodzik, M. Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling. EMBO J.22, 4409–4420 (2003). ArticleCASPubMedPubMed Central Google Scholar
Djiane, A., Yogev, S. & Mlodzik, M. The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell121, 621–631 (2005). ArticleCASPubMed Google Scholar
Montcouquiol, M. et al. Asymmetric localization of Vangl2 and Fz3 indicate novel mechanisms for planar cell polarity in mammals. J. Neurosci.26, 5265–5275 (2006). ArticleCASPubMedPubMed Central Google Scholar
Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell98, 585–595 (1999). ArticleCASPubMed Google Scholar
Wolff, T. & Rubin, G. M. Strabismus, a novel gene that regulates tissue polarity and cell fate decisions in Drosophila. Development125, 1149–1159 (1998). CASPubMed Google Scholar
Lu, B., Usui, T., Uemura, T., Jan, L. & Jan, Y. N. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol.9, 1247–1250 (1999). ArticleCASPubMed Google Scholar
Wang, J. et al. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nature Genet.37, 980–985 (2005). ArticleCASPubMed Google Scholar
Wang, Y., Guo, N. & Nathans, J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J. Neurosci.26, 2147–2156 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature405, 81–85 (2000). ArticleCASPubMed Google Scholar
Kinoshita, N., Iioka, H., Miyakoshi, A. & Ueno, N. PKCδ is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev.17, 1663–1676 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ciruna, B., Jenny, A., Lee, D., Mlodzik, M. & Schier, A. F. Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature439, 220–224 (2006). The first data set to analyse PCP protein distribution inin vivotime-lapse movies in vertebrates. In combination with the genetic power of zebrafish this is the best reference for PCP factor localization during CE. ArticleCASPubMedPubMed Central Google Scholar
Jiang, D., Munro, E. M. & Smith, W. C. Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr. Biol.15, 79–85 (2005). ArticleCASPubMed Google Scholar
Amonlirdviman, K. et al. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science307, 423–426 (2005). This work provides the first mathematical modelling of PCP establishment in theD. melanogasterwing. It serves a starting point for future models. ArticleCASPubMed Google Scholar
Lawrence, P. A., Casal, J. & Struhl, G. Cell interactions and planar polarity in the abdominal epidermis of Drosophila. Development131, 4651–4664 (2004). This work defines the PCP features of the abdominal cuticle ofD. melanogasterin a detailed manner. ArticleCASPubMed Google Scholar
Le Garrec, J. F., Lopez, P. & Kerszberg, M. Establishment and maintenance of planar epithelial cell polarity by asymmetric cadherin bridges: a computer model. Dev. Dyn.235, 235–246 (2006). ArticleCASPubMed Google Scholar
Klein, T. J., Jenny, A., Djiane, A. & Mlodzik, M. CKIε/discs overgrown promotes both Wnt–Fz/β-catenin and Fz/PCP signaling in Drosophila. Curr. Biol.16, 1337–1343 (2006). ArticleCASPubMed Google Scholar
Strutt, H., Price, M. A. & Strutt, D. Planar polarity is positively regulated by casein kinase Iε in Drosophila. Curr. Biol.16, 1329–1336 (2006). ArticleCASPubMed Google Scholar
McKay, R. M., Peters, J. M. & Graff, J. M. The casein kinase I family: roles in morphogenesis. Dev. Biol.235, 378–387 (2001). ArticleCASPubMed Google Scholar
Katanaev, V. L., Ponzielli, R., Semeriva, M. & Tomlinson, A. Trimeric G protein-dependent frizzled signaling in Drosophila. Cell120, 111–122 (2005). ArticleCASPubMed Google Scholar
Hannus, M., Feiguin, F., Heisenberg, C. P. & Eaton, S. Planar cell polarization requires Widerborst, a B' regulatory subunit of protein phosphatase 2A. Development129, 3493–3503 (2002). CASPubMed Google Scholar
Hyodo-Miura, J. et al. XGAP, an ArfGAP, is required for polarized localization of PAR proteins and cell polarity in Xenopus gastrulation. Dev. Cell11, 69–79 (2006). ArticleCASPubMed Google Scholar
Ossipova, O., Dhawan, S., Sokol, S. & Green, J. B. Distinct PAR-1 proteins function in different branches of Wnt signaling during vertebrate development. Dev. Cell8, 829–841 (2005). ArticleCASPubMed Google Scholar
Brown, K. E. & Freeman, M. EGFR signalling defines a protective function for ommatidial orientation in the Drosophila eye. Development130, 5401–5412 (2003). ArticleCASPubMed Google Scholar
Gaengel, K. & Mlodzik, M. EGFR signaling regulates ommatidial rotation and cell motility in the Drosophila eye via MAPK/Pnt signaling and the Ras effector Canoe/AF6. Development130, 5413–5423 (2003). ArticleCASPubMed Google Scholar
Wolff, T. & Ready, D. F. The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development113, 841–850 (1991). CASPubMed Google Scholar
Wallingford, J. B. Vertebrate gastrulation: polarity genes control the matrix. Curr. Biol.15, R414–R416 (2005). ArticleCASPubMed Google Scholar
Elul, T. & Keller, R. Monopolar protrusive activity: a new morphogenic cell behavior in the neural plate dependent on vertical interactions with the mesoderm in Xenopus. Dev. Biol.224, 3–19 (2000). ArticleCASPubMed Google Scholar
Shih, J. & Keller, R. Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development116, 901–914 (1992). CASPubMed Google Scholar
Trinkaus, J. P., Trinkaus, M. & Fink, R. D. On the convergent cell movements of gastrulation in Fundulus. J. Exp. Zool.261, 40–61 (1992). ArticleCASPubMed Google Scholar
Ulrich, F. et al. Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development130, 5375–5384 (2003). ArticleCASPubMed Google Scholar
Kilian, B. et al. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech. Dev.120, 467–476 (2003). ArticleCASPubMed Google Scholar
Marlow, F., Topczewski, J., Sepich, D. & Solnica-Krezel, L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol.12, 876–884 (2002). ArticleCASPubMed Google Scholar
Winter, C. G. et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell105, 81–91 (2001). ArticleCASPubMed Google Scholar
D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nature Rev. Mol. Cell Biol.7, 347–358 (2006). ArticleCAS Google Scholar
Mlodzik, M. Planar polarity in the Drosophila eye: a multifaceted view of signaling specificity and cross-talk. EMBO J.18, 6873–6879 (1999). ArticleCASPubMedPubMed Central Google Scholar
Strutt, H. & Strutt, D. Polarity determination in the Drosophila eye. Curr. Opin. Genet. Dev.9, 442–446 (1999). ArticleCASPubMed Google Scholar
Choi, K.-W. & Benzer, S. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell78, 125–136 (1994). ArticleCASPubMed Google Scholar
Chou, Y. H. & Chien, C. T. Scabrous controls ommatidial rotation in the Drosophila compound eye. Dev. Cell3, 839–850 (2002). ArticleCASPubMed Google Scholar
Strutt, H. & Strutt, D. EGF signaling and ommatidial rotation in the Drosophila eye. Curr. Biol.13, 1451–1457 (2003). ArticleCASPubMed Google Scholar
Mirkovic, I. & Mlodzik, M. Cooperative activities of Drosophila DE-Cadherin and DN-Cadherin regulate the cell motility process of ommatidial rotation. Development133, 3283–3293 (2006). ArticleCASPubMed Google Scholar
Classen, A. K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell9, 805–817 (2005). This paper provides genetic and morphological evidence that one of the functions of Fz/PCP signalling might be the directed recycling of cadherin-containing junctional complexes during cell-shape changes. A similar mechanism might function in the Fz/PCP-regulated cell-motility processes. ArticleCASPubMed Google Scholar
Glickman, N. S., Kimmel, C. B., Jones, M. A. & Adams, R. J. Shaping the zebrafish notochord. Development130, 873–887 (2003). ArticleCASPubMed Google Scholar
Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature382, 225–230 (1996). ArticleCASPubMed Google Scholar
Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol.20, 781–810 (2004). ArticleCASPubMed Google Scholar
Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature405, 76–81 (2000). ArticleCASPubMed Google Scholar
Lele, Z., Bakkers, J. & Hammerschmidt, M. Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and pipetail mutations. Genesis30, 190–194 (2001). ArticleCASPubMed Google Scholar
Tada, M. & Smith, J. C. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development127, 2227–2238 (2000). CASPubMed Google Scholar
Westfall, T. A. et al. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity. J. Cell Biol.162, 889–898 (2003). ArticleCASPubMedPubMed Central Google Scholar
Adler, P. N., Charlton, J. & Liu, J. Mutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering frizzled signaling. Development125, 959–68 (1998). CASPubMed Google Scholar
Casal, J., Struhl, G. & Lawrence, P. A. Developmental compartments and planar polarity in Drosophila. Curr. Biol.12, 1189–1198 (2002). ArticleCASPubMed Google Scholar
Lawrence, P. A., Casal, J. & Struhl, G. Towards a model of the organisation of planar polarity and pattern in the Drosophila abdomen. Development129, 2749–2760 (2002). CASPubMed Google Scholar
Casal, J., Lawrence, P. A. & Struhl, G. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development133, 4561–4572 (2006). ArticleCASPubMed Google Scholar
Wong, H.-C. et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol. Cell12, 1251–1260 (2003). ArticleCASPubMedPubMed Central Google Scholar
Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T. & Perrimon, N. Differential requirement of Dishevelled provides signaling specificity in the Wingless and planar cell polarity signaling pathways. Genes Dev.12, 2610–2622 (1998). ArticleCASPubMedPubMed Central Google Scholar
Boutros, M., Mihaly, J., Bouwmeester, T. & Mlodzik, M. Signaling specificity by Frizzled receptors in Drosophila. Science288, 1825–1828 (2000). ArticleCASPubMed Google Scholar
Rothbacher, U. et al. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J.19, 1010–1022 (2000). ArticleCASPubMedPubMed Central Google Scholar
Djiane, A., Riou, J., Umbhauer, M., Boucaut, J. & Shi, D. Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development127, 3091–100 (2000). CASPubMed Google Scholar
Vinson, C. R., Conover, S. & Adler, P. N. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature338, 263–264 (1989). ArticleCASPubMed Google Scholar
Wang, Y., Thekdi, N., Smallwood, P. M., Macke, J. P. & Nathans, J. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J. Neurosci.22, 8563–8573 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zheng, L., Zhang, J. & Carthew, R. W. frizzled regulates mirror-symmetric pattern formation in the Drosophila eye. Development121, 3045–3055 (1995). CASPubMed Google Scholar
Boutros, M., Paricio, N., Strutt, D. I. & Mlodzik, M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell94, 109–118 (1998). ArticleCASPubMed Google Scholar
Klingensmith, J., Nusse, R. & Perrimon, N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev.8, 118–130 (1994). ArticleCASPubMed Google Scholar
Sokol, S. Y., Klingensmith, J., Perrimon, N. & Itoh, K. Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled. Development121, 3487 (1995). CASPubMed Google Scholar
Sussman, D. J. et al. Isolation and characterization of a mouse homolog of the Drosophila segment polarity gene dishevelled. Dev. Biol.166, 73–86 (1994). ArticleCASPubMed Google Scholar
Carreira-Barbosa, F. et al. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development130, 4037–4046 (2003). ArticleCASPubMed Google Scholar
Gubb, D. et al. The balance between isoforms of the prickle LIM domain protein is critical for planar polarity in Drosophila imaginal discs. Genes Dev.13, 2315–2327 (1999). ArticleCASPubMedPubMed Central Google Scholar
Takeuchi, M. et al. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr. Biol.13, 674–679 (2003). ArticleCASPubMed Google Scholar
Veeman, M. T., Slusarski, D. C., Kaykas, A., Louie, S. H. & Moon, R. T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol.13, 680–685 (2003). ArticleCASPubMed Google Scholar
Goto, T. & Keller, R. The planar cell polarity gene Strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev. Biol.247, 165–181 (2002). ArticleCASPubMed Google Scholar
Jessen, J. R. et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nature Cell Biol.4, 610–615 (2002). ArticleCASPubMed Google Scholar
Taylor, J., Abramova, N., Charlton, J. & Adler, P. N. Van Gogh: a new Drosophila tissue polarity gene. Genetics150, 199–210 (1998). CASPubMedPubMed Central Google Scholar
Feiguin, F., Hannus, M., Mlodzik, M. & Eaton, S. The Ankyrin repeat protein Diego mediates Frizzled-dependent planar polarization. Developmental Cell1, 93–101 (2001). ArticleCASPubMed Google Scholar
Schwarz-Romond, T. et al. The ankyrin repeat protein Diversin recruits Casein kinase Ie to the β-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes Dev.16, 2073–2084 (2002). ArticleCASPubMedPubMed Central Google Scholar
Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nature Genet.37, 537–543 (2005). ArticleCASPubMed Google Scholar
Lee, H. & Adler, P. N. The grainy head transcription factor is essential for the function of the frizzled pathway in the Drosophila wing. Mech. Dev.121, 37–49 (2004). ArticleCASPubMed Google Scholar
Dabdoub, A. et al. Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development130, 2375–2384 (2003). ArticleCASPubMed Google Scholar
Ohkawara, B., Yamamoto, T. S., Tada, M. & Ueno, N. Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development130, 2129–2138 (2003). ArticleCASPubMed Google Scholar
Topczewski, J. et al. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell1, 251–264 (2001). ArticleCASPubMed Google Scholar
Lu, X. et al. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature430, 93–98 (2004). ArticleCASPubMed Google Scholar
Park, W. J., Liu, J., Sharp, E. J. & Adler, P. N. The Drosophila tissue polarity gene inturned acts cell autonomously and encodes a novel protein. Development122, 961–969 (1996). CASPubMed Google Scholar
Yun, U. J. et al. The inturned protein of Drosophila melanogaster is a cytoplasmic protein located at the cell periphery in wing cells. Dev. Genet.25, 297–305 (1999). ArticleCASPubMed Google Scholar
Collier, S. & Gubb, D. Drosophila tissue polarity requires the cell-autonomous activity of the fuzzy gene, which encodes a novel transmembrane protein. Development124, 4029–4037 (1997). CASPubMed Google Scholar
Adler, P. N., Zhu, C. & Stone, D. Inturned localizes to the proximal side of wing cells under the instruction of upstream planar polarity proteins. Curr. Biol.14, 2046–51 (2004). ArticleCASPubMed Google Scholar
Collier, S., Lee, H., Burgess, R. & Adler, P. The WD40 repeat protein Fritz links cytoskeletal planar polarity to Frizzled subcellular localization in the Drosophila epidermis. Genetics169, 2035–2045 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wong, L. L. & Adler, P. N. Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells. J. Cell Biol.123, 209–221 (1993). ArticleCASPubMed Google Scholar
Eaton, S., Wepf, R. & Simons, K. Roles for Rac1 and Cdc42 in planar polarization and hair outgrowth in the wing of Drosophila. J. Cell Biol.135, 1277–1289 (1996). ArticleCASPubMed Google Scholar
Fanto, M., Weber, U., Strutt, D. I. & Mlodzik, M. Nuclear signaling by Rac and Rho GTPases is required in the establishment of epithelial planar polarity in the Drosophila eye. Curr. Biol.10, 979–988 (2000). ArticleCASPubMed Google Scholar
Habas, R., Dawid, I. B. & He, X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev.17, 295–309 (2003). ArticleCASPubMedPubMed Central Google Scholar
Strutt, D. I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature387, 292–295 (1997). ArticleCASPubMed Google Scholar
Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell107, 843–854 (2001). ArticleCASPubMed Google Scholar
Tahinci, E. & Symes, K. Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation. Dev. Biol.259, 318–335 (2003). ArticleCASPubMed Google Scholar
Matusek, T. et al. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development133, 957–966 (2006). ArticleCASPubMed Google Scholar
Paricio, N., Feiguin, F., Boutros, M., Eaton, S. & Mlodzik, M. The Drosophila STE20-like kinase misshapen is required downstream of the Frizzled receptor in planar polarity signaling. EMBO J.18, 4669–4678 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tepass, U. Genetic analysis of cadherin function in animal morphogenesis. Curr. Opin. Cell Biol.11, 540–548 (1999). ArticleCASPubMed Google Scholar